Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4186-4193, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38545933

RESUMEN

Achieving metal-organic frameworks (MOFs) with nonlinear optical (NLO) switching is profoundly important. Herein, the conductive MOFs Cu-TCNQ phase I (Ph-I) and phase II (Ph-II) films were prepared using the liquid-phase-epitaxial layer-by-layer spin-coating method and steam heating method, respectively. Electronic experiments showed that the Ph-II film could be changed into the Ph-I film under an applied electric field. The third-order NLO results revealed that the Ph-I film had a third-order nonlinear reverse saturation absorption (RSA) response and the Ph-II film displayed a third-order nonlinear saturation absorption (SA) response. With increases in the heating time and applied voltage, the third-order NLO response realized the reversible transition between SA and RSA. The theoretical calculations indicated that Ph-I possessed more interlayer charge transfer, resulting in a third-order nonlinear RSA response that was stronger than that of Ph-II. This work applies phase-transformed MOFs to third-order NLO switching and provides new insights into the nonlinear photoelectric applications of MOFs.

2.
J Am Chem Soc ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869376

RESUMEN

Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.

3.
Chemistry ; 30(6): e202303148, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37943116

RESUMEN

Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.

4.
Inorg Chem ; 63(26): 12100-12108, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896443

RESUMEN

Different from the previous neutral reaction solvent system, this work explores the synthesis of Al-oxo rings in ionic environments. Deep eutectic solvents (DESs) formed by quaternary ammonium salts hydrogen bond acceptor (HBA) and phenols hydrogen bond donor (HBD) further reduce the melting point of the reaction system and provide an ionic environment. Further, the quaternary ammonium salt was chosen as the HBA because it contains a halogen anion that matches the size of the central cavity of the molecular ring. Based on this thought, five Al8 ion pair cocrystals were synthesized via "DES thermal". The general formula is Q+ ⊂ {Cl@[Al8(BD)8(µ2-OH)4L12]} (AlOC-180-AlOC-185, Q+ = tetrabutylammonium, tetrapropylammonium, 1-butyl-3-methylimidazole; HBD = phenol, p-chlorophenol, p-fluorophenol; HL = benzoic acid, 1-naphthoic acid, 1-pyrenecarboxylic acid, anthracene-9-carboxylic acid). Structural studies reveal that the phenol-coordinated Al molecular ring and the quaternary ammonium ion pair form the cocrystal compounds. The halogen anions in the DES component are confined in the center of the molecular ring, and the quaternary ammonium cations are located in the organic shell. Such an adaptive cocrystal binding pattern is particularly evident in the structures coordinated with low-symmetry ligands such as naphthoic acid and pyrene acid. Finally, the optical behavior of these cocrystal compounds is understood from the analysis of crystal structure and theoretical calculation.

5.
Nano Lett ; 23(7): 3062-3069, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36995141

RESUMEN

Structural asymmetry affecting the nonlinear optics (NLO) of metal-organic frameworks (MOFs) is very important in fundamentals and applications but is still a challenge. Herein we develop a series of indium-porphyrinic framework (InTCPP) thin films and provide the first study on the coordination-induced symmetry breaking on their third-order NLO. The continuous and oriented InTCPP(H2) thin films were grown on quartz substrates and then postcoordinated with different cations (Fe2+ or Fe3+Cl-) in InTCPP(H2) (named InTCPP(Fe2+) and InTCPP(Fe3+Cl-)). The third-order NLO results reveal the Fe2+ and Fe3+Cl- coordinated InTCPP thin films have substantially enhanced NLO performance. Moreover, InTCPP(Fe3+Cl-) thin films cause symmetry breaking of microstructures, resulting in a 3-fold increase in the nonlinear absorption coefficient (up to 6.35 × 10-6 m/W) compared to InTCPP(Fe2+). This work not only develops a series of nonlinear optical MOF thin films but also provides new insight into symmetry breaking on MOFs for nonlinear optoelectronic applications.

6.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38054737

RESUMEN

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

7.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702442

RESUMEN

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Asunto(s)
Cadmio , Endófitos , Metales Pesados , Semillas , Microbiología del Suelo , Contaminantes del Suelo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Metales Pesados/metabolismo , Semillas/microbiología , Contaminantes del Suelo/metabolismo , Cadmio/metabolismo , Biodiversidad , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Suelo/química , Biodegradación Ambiental , Raíces de Plantas/microbiología
8.
Angew Chem Int Ed Engl ; 63(12): e202318806, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38278762

RESUMEN

Making oppositely charged metal-organic cages (MOCs) into a tightly ordered structure may bring interesting functions. Herein, we report a novel structure composed of anionic (Zr4 L6 )8- (L=embonate) tetrahedral cages and in situ-formed cationic [Zn4 (Bim)4 ]4+ (Bim=[BH(im)3 ]- ; im=imidazole) cubic cages. Chiral transfer is observed from enantiopure (Zr4 L6 )8- cage to enantiopure [Zn4 (Bim)4 ]4+ cage. A pair of enantiomers (PTC-373(Δ) and PTC-373(Λ)) are formed. PTC-373 exhibits high chemical and thermal stabilities, affording an interesting single-crystal-to-single-crystal transformation. More importantly, the combination of ionic pair cages significantly enhances its third-order nonlinear optical property, and its thin-film exhibits an excellent optical limiting effect.

9.
J Cell Mol Med ; 27(18): 2701-2713, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37539490

RESUMEN

Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.


Asunto(s)
Glioma , Hirudinas , Ratones , Animales , Humanos , Hirudinas/farmacología , Ratones Desnudos , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Glioma/patología , Proliferación Celular , Autofagia , Apoptosis
10.
BMC Genomics ; 24(1): 435, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537572

RESUMEN

BACKGROUND: Pectate lyase (PL, EC 4.2.2.2), as an endo-acting depolymerizing enzyme, cleaves α-1,4-glycosidic linkages in esterified pectin and involves a broad range of cell wall modifications. However, the knowledge concerning the genome-wide analysis of the PL gene family in Fragaria vesca has not been thoroughly elucidated. RESULTS: In this study, sixteen PLs members in F. vesca were identified based on a genome-wide investigation. Substantial divergences existed among FvePLs in gene duplication, cis-acting elements, and tissue expression patterns. Four clusters were classified according to phylogenetic analysis. FvePL6, 8 and 13 in cluster II significantly contributed to the significant expansions during evolution by comparing orthologous PL genes from Malus domestica, Solanum lycopersicum, Arabidopsis thaliana, and Fragaria×ananassa. The cis-acting elements implicated in the abscisic acid signaling pathway were abundant in the regions of FvePLs promoters. The RNA-seq data and in situ hybridization revealed that FvePL1, 4, and 7 exhibited maximum expression in fruits at twenty days after pollination, whereas FvePL8 and FvePL13 were preferentially and prominently expressed in mature anthers and pollens. Additionally, the co-expression networks displayed that FvePLs had tight correlations with transcription factors and genes implicated in plant development, abiotic/biotic stresses, ions/Ca2+, and hormones, suggesting the potential roles of FvePLs during strawberry development. Besides, histological observations suggested that FvePL1, 4 and 7 enhanced cell division and expansion of the cortex, thus negatively influencing fruit firmness. Finally, FvePL1-RNAi reduced leaf size, altered petal architectures, disrupted normal pollen development, and rendered partial male sterility. CONCLUSION: These results provide valuable information for characterizing the evolution, expansion, expression patterns and functional analysis, which help to understand the molecular mechanisms of the FvePLs in the development of strawberries.


Asunto(s)
Fragaria , Filogenia , Estrés Fisiológico/genética , Desarrollo de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Frutas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Phys Chem Chem Phys ; 25(37): 25442-25449, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37712214

RESUMEN

Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.

12.
J Phys Chem A ; 127(29): 6109-6115, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37449913

RESUMEN

In order to determine the polarizability and hyperpolarizability of a molecule, several key parameters need to be known, including the excitation energy of the ground and excited states, the transition dipole moment, and the difference of dipole moment between the ground and excited states. In this study, a machine-learning model was developed and trained to predict the molecular polarizability and second-order hyperpolarizability on a subset of QM9 data set. The density of states was employed as input to the model. The results demonstrated that the machine-learning model effectively estimated both polarizability and the order of magnitude of second-order hyperpolarizability. However, the model was unable to predict the dipole moment and first-order hyperpolarizability, suggesting limitations in its ability to predict the difference of dipole moment between the ground and excited states. The computational efficiency of machine-learning models compared to traditional quantum mechanical calculations enables the possibility of large-scale screening of molecules that satisfy specific requirements using existing databases. This work presents a potential solution for the efficient exploration and analysis of molecules on a larger scale.

13.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903547

RESUMEN

Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.

14.
Angew Chem Int Ed Engl ; 62(27): e202305225, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37104116

RESUMEN

Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large-scale production. Herein, we report the synthesis of imine and aminal-linked POPs using inexpensive diamine and dialdehyde monomers in green solvents. Theoretical calculations and control experiments show that using meta-diamines is crucial for forming aminal linkages and branching porous networks from [2+2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub-kilogram quantities at a relatively low cost. Proof-of-concept studies demonstrate that the POPs can be used as high-performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost-effective approach for large-scale synthesis of various POPs.

15.
Angew Chem Int Ed Engl ; 62(31): e202305977, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289538

RESUMEN

The electronic conductivity (EC) of metal-organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2 O on the EC of MOFs is rarely reported. We explored the effect of H2 O on the EC in the MOFs (NH2 )2 -MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2 SO4 @(NH2 )2 -MIL-125 by H2 O was observed. Brønsted acid-base pairs formed with the -NH2 groups, and H2 SO4 played an important role in promoting the charge transfer from H2 O to the MOF. Based on H2 SO4 @(NH2 )2 -MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2 O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.

16.
Angew Chem Int Ed Engl ; 62(22): e202302882, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37005221

RESUMEN

Designing porous materials for C2 H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2 H2 sorption and C2 H2 /CO2 separation in two isostructural NbO metal-organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA. The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2 H2 , leading to irreversible structural collapse and loss of C2 H2 /CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2 H2 to form specific π-complexation, contributing to high C2 H2 capture (28.7 cm3 g-1 at 0.01 bar and 153 cm3 g-1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2 H2 from C2 H2 /CO2 mixtures with satisfying selectivity and C2 H2 capacity (37 min g-1 ). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.

17.
Angew Chem Int Ed Engl ; 62(26): e202302996, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37106275

RESUMEN

Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Solventes , Catálisis
18.
J Am Chem Soc ; 144(18): 8153-8161, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35476917

RESUMEN

A series of catecholate-functionalized titanium-oxo clusters (TOCs), PTC-271 to PTC-277, with atomically precise structures were synthesized and characterized, including distinctive "boat" and "chair" conformations in PTC-273 and PTC-274, respectively. These cluster compounds are prominent for their ultralow optical band gaps, as is visually evident from the rather unusual black TOCs (B-TOCs), PTC-272 to PTC-277. The cluster structures were found to be ultrastable with respect to air, water, organic solvents, and even acidic or basic aqueous solutions in a wide pH range (pH 0-13), owing to the stabilizing effects of catecholate and its derivatives, as well as the carboxylate ligands. Another prominent feature is the occurrence of third-order nonlinear optical (NLO) performance, which has previously been unreported in the field of homometallic titanium-oxo clusters. Open-aperture Z-scan experiments show significant solid-state optical limiting (OL) applications of these B-TOCs, with high laser irradiation stability and low minimum normalized transmittance (Tmin) of PTC-273 as ∼0.17. Meanwhile, theoretical calculations indicate that the smaller band gaps of B-TOCs were beneficial for strengthening the NLO response. This work not only represents a significant milestone in the construction of stable low-band gap black titanium oxide materials but also contributes to the mechanism insights into their optical applications.

19.
Environ Microbiol ; 24(8): 3322-3333, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35001475

RESUMEN

Stellera chamaejasme has become a problematic weed in northern and south-western grasslands of China. To evaluate a possible role of endophytes in its strong competitive capacity, the endophytic bacterial community of S. chamaejasme was investigated by culture-dependent and independent methods, and the growth-promoting traits of some culturable isolates as well as the benefit of endophyte ST3CS3 (Brevundimonas sp.) on host plants growth were studied. The results showed that 823 OTUs were generated with a 97% similarity level in the culture-independent study. They were classified into 29 phyla, 61 classes, 147 orders, 237 families and 440 genera. Among them, Pseudomonas and Ralstonia were the most dominant genera in belowground parts (G) (64.25%) and aboveground parts (S) (26.54%) respectively. The diversity and species richness of endophytes in S were significantly higher than that of G (P < 0.001, t-test). Contrary to this, the number of culturable bacteria in S was a little lower than that of G (P > 0.05, t-test). Totally, 176 isolates belonging to 30 morphotypes were obtained in the culture-dependent study. Among them, Acinetobacter was the most dominant genus in G (51.30%), then followed by Pseudomonas (6.09%) and Brevundimonas (6.09%), while Lysinibacillus (21.31%) was the most dominant genus in S, followed by Pseudomonas (11.48%). Growth-promoting trait tests indicated that 93.65% of the tested isolates (63) exhibited nitrogen-fixing, IAA-synthesizing, phosphorus or potassium solubilizing capacity, in which 77.97% belonged to Proteobacteria, a phylum found to contain more active isolates. Pot experiments demonstrated that endophyte ST3CS3 can significantly improve host plants growth and increase its nitrogen and chlorophyll content (P < 0.01, t-test). Therefore, we suggest that strong competitiveness of S. chamaejasme may in part be due to possession of high ratios of plant growth-promoting proteobacterial endophytes such as Pseudomonas, Acinetobacter and Brevundimonas.


Asunto(s)
Pradera , Thymelaeaceae , Bacterias , Endófitos , Humanos , Nitrógeno , Raíces de Plantas/microbiología , Proteobacteria , Thymelaeaceae/microbiología
20.
Phys Chem Chem Phys ; 24(47): 29120-29129, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36440812

RESUMEN

Mixed X-anion perovskites, such as CsPbX3 (X = Cl, Br, or I), play an important role in photovoltaic applications. The massive disordered structures associated with mixed anions produce the need for property calculations. However, traditional density functional theory (DFT) computational tools are limited by their computational efficiency to generate the properties of a large number of structures quickly. Researchers have proposed supervised deep learning to forecast crystal properties. For such a supervised convolutional neural network (CNN), we introduce an adversarial loss function that allows for consistent or lower errors with a fewer samples. Meanwhile, we have trained parameterized quantum circuits (PQCs) of CNNs and auto-encoder networks for extracting structural representations. PQCs of deep learning, also named quantum deep learning or quantum machine learning, have been first applied in the research of perovskites and obtained an RMSE (root mean squared error) of less than 1 meV. Our work demonstrates that adversarial learning training mechanisms and PQC-based quantum deep learning will emerge for extensive and deep exploration of data-driven material formation prediction tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA