Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771241

RESUMEN

The functional brain connectome is highly dynamic over time. However, how brain connectome dynamics evolves during the third trimester of pregnancy and is associated with later cognitive growth remains unknown. Here, we use resting-state functional Magnetic Resonance Imaging (MRI) data from 39 newborns aged 32 to 42 postmenstrual weeks to investigate the maturation process of connectome dynamics and its role in predicting neurocognitive outcomes at 2 years of age. Neonatal brain dynamics is assessed using a multilayer network model. Network dynamics decreases globally but increases in both modularity and diversity with development. Regionally, module switching decreases with development primarily in the lateral precentral gyrus, medial temporal lobe, and subcortical areas, with a higher growth rate in primary regions than in association regions. Support vector regression reveals that neonatal connectome dynamics is predictive of individual cognitive and language abilities at 2  years of age. Our findings highlight network-level neural substrates underlying early cognitive development.


Asunto(s)
Encéfalo , Cognición , Conectoma , Imagen por Resonancia Magnética , Humanos , Conectoma/métodos , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Cognición/fisiología , Recién Nacido , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Preescolar , Desarrollo del Lenguaje , Desarrollo Infantil/fisiología
2.
Hum Brain Mapp ; 45(2): e26575, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339909

RESUMEN

Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.


Asunto(s)
Conectoma , Neocórtex , Fenómenos Fisiológicos del Sistema Nervioso , Humanos , Imagen por Resonancia Magnética/métodos , Cognición/fisiología , Encéfalo/fisiología , Conectoma/métodos , Neocórtex/diagnóstico por imagen
3.
Epilepsy Behav ; 155: 109722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643660

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.


Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , Semántica
4.
Cereb Cortex ; 33(21): 10836-10847, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37718155

RESUMEN

Alzheimer's disease and amnestic mild cognitive impairment are associated with disrupted functional organization in brain networks, involved with alteration of functional segregation. Connectome gradients are a new tool representing brain functional topological organization to smoothly capture the human macroscale hierarchy. Here, we examined altered topological organization in amnestic mild cognitive impairment and Alzheimer's disease by connectome gradient mapping. We further quantified functional segregation by gradient dispersion. Then, we systematically compared the alterations observed in amnestic mild cognitive impairment and Alzheimer's disease patients with those in normal controls in a two-dimensional functional gradient space from both the whole-brain level and module level. Compared with normal controls, the first gradient, which described the neocortical hierarchy from unimodal to transmodal regions, showed a more distributed and significant suppression in Alzheimer's disease than amnestic mild cognitive impairment patients. Furthermore, gradient dispersion showed significant decreases in Alzheimer's disease at both the global level and module level, whereas this alteration was limited only to limbic areas in amnestic mild cognitive impairment. Notably, we demonstrated that suppressed gradient dispersion in amnestic mild cognitive impairment and Alzheimer's disease was associated with cognitive scores. These findings provide new evidence for altered brain hierarchy in amnestic mild cognitive impairment and Alzheimer's disease, which strengthens our understanding of the progressive mechanism of cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
5.
Brain ; 144(8): 2486-2498, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33730163

RESUMEN

Episodic memory is the ability to remember events from our past accurately. The process of pattern separation is hypothesized to underpin this ability and is defined as the capacity to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy who presented with hippocampal structural anomalies. We measured neural activity in all participants using functional MRI while they retrieved memorized items or lure items, which shared features with the target. Behaviourally, patients with temporal lobe epilepsy were less able to exclude lures than controls and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and neocortex, we identified the topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and determined the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded topography of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In patients with temporal lobe epilepsy, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person-specific measures of concordance between task-related activity and connectivity gradients in patients and controls were related to inter-individual differences in behavioural measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients, capturing the functional underpinnings of episodic memory processes in a manner that is sensitive to their reorganization in pathology.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición/fisiología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Memoria Episódica , Adulto , Conectoma , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Adulto Joven
6.
J Biomed Inform ; 125: 103978, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922021

RESUMEN

Alzheimer's disease is a common neurodegenerative brain disease that affects the elderly population worldwide. Its early automatic detection is vital for early intervention and treatment. A common solution is to perform future cognitive score prediction based on the baseline brain structural magnetic resonance image (MRI), which can directly infer the potential severity of disease. Recently, several studies have modelled disease progression by predicting the future brain MRI that can provide visual information of brain changes over time. Nevertheless, no studies explore the intra correlation of these two solutions, and it is unknown whether the predicted MRI can assist the prediction of cognitive score. Here, instead of independent prediction, we aim to predict disease progression in multi-view, i.e., predicting subject-specific changes of cognitive score and MRI volume concurrently. To achieve this, we propose an end-to-end integrated framework, where a regression model and a generative adversarial network are integrated together and then jointly optimized. Three integration strategies are exploited to unify these two models. Moreover, considering that some brain regions, such as hippocampus and middle temporal gyrus, could change significantly during the disease progression, a region-of-interest (ROI) mask and a ROI loss are introduced into the integrated framework to leverage this anatomical prior knowledge. Experimental results on the longitudinal Alzheimer's Disease Neuroimaging Initiative dataset demonstrated that the integrated framework outperformed the independent regression model for cognitive score prediction. And its performance can be further improved with the ROI loss for both cognitive score and MRI prediction.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Neuroimagen
7.
Cereb Cortex ; 31(7): 3213-3225, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33667310

RESUMEN

Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access.


Asunto(s)
Memoria/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Semántica
8.
Neuroimage ; 238: 118252, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116155

RESUMEN

Resting-state functional connectivity (RSFC) can be used for mapping large-scale human brain networks during rest. There is considerable interest in distinguishing the individual-shared and individual-specific components in RSFC for the better identification of individuals and prediction of behavior. Therefore, we propose a multi-task learning based sparse convex alternating structure optimization (MTL-sCASO) method to decompose RSFC into individual-specific connectivity and individual-shared connectivity. We used synthetic data to validate the efficacy of the MTL-sCASO method. In addition, we verified that individual-specific connectivity achieves higher identification rates than the Pearson correlation (PC) method, and the individual-specific components observed in 886 individuals from the Human Connectome Project (HCP) examined in two sessions over two consecutive days might serve as individual fingerprints. Individual-specific connectivity has low inter-subject similarity (-0.005±0.023), while individual-shared connectivity has high inter-subject similarity (0.822±0.061). We also determined the anatomical locations (region or subsystem) related to individual attributes and common features. We find that individual-specific connectivity exhibits low degree centrality in the sensorimotor processing system but high degree centrality in the control system. Importantly, the individual-specific connectivity estimated by the MTL-sCASO method accurately predicts behavioral scores (improved by 9.4% compared to the PC method) in the cognitive dimension. The decomposition of individual-specific and individual-shared components from RSFC provides a new approach for tracing individual traits and group analysis using functional brain networks.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Aprendizaje Automático , Red Nerviosa/diagnóstico por imagen , Adulto , Humanos , Imagen por Resonancia Magnética
9.
Neuroimage ; 224: 117429, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038538

RESUMEN

Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Imagen de Difusión por Resonancia Magnética , Neuroimagen Funcional , Imagen por Resonancia Magnética , Adulto , Encéfalo/fisiología , Cognición , Femenino , Humanos , Masculino , Cadenas de Markov , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto Joven
10.
Hum Brain Mapp ; 39(5): 2098-2110, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29400420

RESUMEN

Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Aprendizaje/fisiología , Música , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Desempeño Psicomotor/fisiología , Estimulación Acústica , Adulto , Análisis de Varianza , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Factores de Tiempo , Adulto Joven
11.
Neural Plast ; 2016: 3462309, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057360

RESUMEN

Previous studies have demonstrated that amnestic mild cognitive impairment (aMCI) has disrupted properties of large-scale cortical networks based on cortical thickness and gray matter volume. However, it is largely unknown whether the topological properties of cortical networks based on geometric measures (i.e., sulcal depth, curvature, and metric distortion) change in aMCI patients compared with normal controls because these geometric features of cerebral cortex may be related to its intrinsic connectivity. Here, we compare properties in cortical networks constructed by six different morphological features in 36 aMCI participants and 36 normal controls. Six cortical features (3 volumetric and 3 geometric features) were extracted for each participant, and brain abnormities in aMCI were identified by cortical network based on graph theory method. All the cortical networks showed small-world properties. Regions showing significant differences mainly located in the medial temporal lobe and supramarginal and right inferior parietal lobe. In addition, we also found that the cortical networks constructed by cortical thickness and sulcal depth showed significant differences between the two groups. Our results indicated that geometric measure (i.e., sulcal depth) can be used to construct network to discriminate individuals with aMCI from controls besides volumetric measures.


Asunto(s)
Amnesia/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Amnesia/patología , Amnesia/fisiopatología , Mapeo Encefálico , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Red Nerviosa/fisiopatología
12.
Cell Rep ; 43(5): 114168, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700981

RESUMEN

The first 1,000 days of human life lay the foundation for brain development and later cognitive growth. However, the developmental rules of the functional connectome during this critical period remain unclear. Using high-resolution, longitudinal, task-free functional magnetic resonance imaging data from 930 scans of 665 infants aged 28 postmenstrual weeks to 3 years, we report the early maturational process of connectome segregation and integration. We show the dominant development of local connections alongside a few global connections, the shift of brain hubs from primary regions to high-order association cortices, the developmental divergence of network segregation and integration along the anterior-posterior axis, the prediction of neurocognitive outcomes, and their associations with gene expression signatures of microstructural development and neuronal metabolic pathways. These findings advance our understanding of the principles of connectome remodeling during early life and its neurobiological underpinnings and have implications for studying typical and atypical development.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Lactante , Masculino , Femenino , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Preescolar , Red Nerviosa/fisiología , Recién Nacido
13.
Nat Commun ; 15(1): 784, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278807

RESUMEN

Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Adelgazamiento de la Corteza Cerebral , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Imagen por Resonancia Magnética
14.
Med Image Anal ; 85: 102740, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36682155

RESUMEN

Three-dimensional (3D) deformable image registration is a fundamental technique in medical image analysis tasks. Although it has been extensively investigated, current deep-learning-based registration models may face the challenges posed by deformations with various degrees of complexity. This paper proposes an adaptive multi-level registration network (AMNet) to retain the continuity of the deformation field and to achieve high-performance registration for 3D brain MR images. First, we design a lightweight registration network with an adaptive growth strategy to learn deformation field from multi-level wavelet sub-bands, which facilitates both global and local optimization and achieves registration with high performance. Second, our AMNet is designed for image-wise registration, which adapts the local importance of a region in accordance with the complexity degrees of its deformation, and thereafter improves the registration efficiency and maintains the continuity of the deformation field. Experimental results from five publicly-available brain MR datasets and a synthetic brain MR dataset show that our method achieves superior performance against state-of-the-art medical image registration approaches.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Encéfalo , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Imagen Asistido por Computador/métodos
15.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37745373

RESUMEN

The functional connectome of the human brain represents the fundamental network architecture of functional interdependence in brain activity, but its normative growth trajectory across the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset from 119 global sites, including 33,809 task-free fMRI and structural MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. Lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We report critical inflection points in the non-linear growth trajectories of the whole-brain functional connectome, particularly peaking in the fourth decade of life. Having established the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further show distinct maturation timelines for functional segregation within different subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder. Our findings shed light on the life-course evolution of the functional connectome and serve as a normative reference for quantifying individual variation in patients with neurological and psychiatric disorders.

16.
Adv Sci (Weinh) ; 9(12): e2104538, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35098696

RESUMEN

Individuals with mild cognitive impairment (MCI) of different subtypes show distinct alterations in network patterns. The first aim of this study is to identify the subtypes of MCI by employing a regional radiomics similarity network (R2SN). The second aim is to characterize the abnormality patterns associated with the clinical manifestations of each subtype. An individual-level R2SN is constructed for N = 605 normal controls (NCs), N = 766 MCI patients, and N = 283 Alzheimer's disease (AD) patients. MCI patients' R2SN profiles are clustered into two subtypes using nonnegative matrix factorization. The patterns of brain alterations, gene expression, and the risk of cognitive decline in each subtype are evaluated. MCI patients are clustered into "similar to the pattern of NCs" (N-CI, N = 252) and "similar to the pattern of AD" (A-CI, N = 514) subgroups. Significant differences are observed between the subtypes with respect to the following: 1) clinical measures; 2) multimodal neuroimaging; 3) the proportion of progression to dementia (61.54% for A-CI and 21.77% for N-CI) within three years; 4) enriched genes for potassium-ion transport and synaptic transmission. Stratification into the two subtypes provides new insight for risk assessment and precise early intervention for MCI patients.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Progresión de la Enfermedad , Humanos , Neuroimagen/métodos
17.
Sci Data ; 9(1): 569, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109562

RESUMEN

Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).


Asunto(s)
Conectoma , Neuroimagen , Adulto , Canadá , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Neuroimagen/métodos
18.
Netw Neurosci ; 5(3): 783-797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746627

RESUMEN

A structural covariance network (SCN) has been used successfully in structural magnetic resonance imaging (sMRI) studies. However, most SCNs have been constructed by a unitary marker that is insensitive for discriminating different disease phases. The aim of this study was to devise a novel regional radiomics similarity network (R2SN) that could provide more comprehensive information in morphological network analysis. R2SNs were constructed by computing the Pearson correlations between the radiomics features extracted from any pair of regions for each subject (AAL atlas). We further assessed the small-world property of R2SNs, and we evaluated the reproducibility in different datasets and through test-retest analysis. The relationships between the R2SNs and general intelligence/interregional coexpression of genes were also explored. R2SNs could be replicated in different datasets, regardless of the use of different feature subsets. R2SNs showed high reproducibility in the test-retest analysis (intraclass correlation coefficient > 0.7). In addition, the small-word property (σ > 2) and the high correlation between gene expression (R = 0.29, p < 0.001) and general intelligence were determined for R2SNs. Furthermore, the results have also been repeated in the Brainnetome atlas. R2SNs provide a novel, reliable, and biologically plausible method to understand human morphological covariance based on sMRI.

19.
IEEE Trans Neural Syst Rehabil Eng ; 28(4): 817-824, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32142446

RESUMEN

Musical training, because it involves the interaction and integration of diverse functional systems, is an excellent model to investigate training-induced brain plasticity. The human brain functions in a network architecture in which dynamic modules and subgraphs are considered to enable efficient information communication. However, it remains largely unknown how the dynamic integration of functional systems changes with musical training, which may provide new insight into musical training-induced brain plasticity and further the use of music therapy for neuropsychiatric disease and brain injury. Here, 29 healthy young adult novices who received 24 weeks of piano training, and another 27 novices without any intervention were scanned at three time points-before and after musical training and 12 weeks after training. We used nonnegative matrix factorization to identify a set of subgraphs and their corresponding time-dependent coefficients from a concatenated functional network of all the subjects in sliding time windows. The energy and entropy of the time-dependent coefficients were computed to quantify the subgraph's dynamic changes in expression. The training group showed a significantly increased energy of the time-dependent coefficients of 3 subgraphs after training. Furthermore, one of the subgraphs, comprised of primary functional systems and cingulo-opercular task control and salience systems, showed significantly changed entropy in the training group after training. Our results suggest that the integration of functional systems undergoes increased flexibility in fine-scale dynamics after musical training, which reveals how brain functional systems engage in musical performance. The efficacy of musical training induced brain plasticity may provide new therapeutic strategies for brain injury and neuropsychiatric disorders.


Asunto(s)
Música , Encéfalo , Mapeo Encefálico , Corteza Cerebral , Humanos , Plasticidad Neuronal , Adulto Joven
20.
Front Neuroanat ; 14: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508600

RESUMEN

Musical training can induce the functional and structural changes of the hippocampus. The hippocampus is not a homogeneous structure which can be divided into anterior and posterior parts along its longitudinal axis, and the whole-brain structural covariances of anterior (aHC) and posterior hippocampus (pHC) show distinct patterns in young adults. However, little is known about whether the anterior and posterior hippocampal structural covariances change after long-term musical training. Here, we investigated the musical training-induced changes of the whole-brain structural covariances of bilateral aHC and pHC in a longitudinal designed experiment with two groups (training group and control group) across three time points [the beginning (TP1) and the end (TP2) of 24 weeks of training, and 12 weeks after training (TP3)]. Using seed partial least square, we identified two significant patterns of structural covariance of the aHC and pHC. The first showed common structural covariance of the aHC and pHC. The second pattern revealed distinct structural covariance of the two regions and reflected the changes of structural covariance of the left pHC in the training group across three time points: the left pHC showed significant structural covariance with bilateral hippocampus and parahippocampal gyrus, left calcarine sulcus only at TP1 and TP3. Furthermore, the integrity of distinct structural networks of aHC and pHC in the second pattern significantly increased in the training group. Our findings suggest that musical training could change the organization of structural whole-brain covariance for left pHC and enhance the degree of the structural covariance network differentiation of the aHC and pHC in young adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA