Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 147: 107364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636434

RESUMEN

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Asunto(s)
Resorción Ósea , Osteogénesis , Ovariectomía , PPAR delta , Transducción de Señal , Animales , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Resorción Ósea/metabolismo , Ratas , PPAR delta/metabolismo , Femenino , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Células RAW 264.7 , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Relación Dosis-Respuesta a Droga , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Ratas Sprague-Dawley , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Diferenciación Celular/efectos de los fármacos
2.
Microorganisms ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543680

RESUMEN

Recently, probiotics have been widely applied for the in situ remediation of aquatic water. Numerous studies have proved that probiotics can regulate water quality by improving the microbial community. Nitrogen cycling, induced by microorganisms, is a crucial process for maintaining the balance of the aquatic ecosystem. Nevertheless, the underlying mechanisms by which probiotics enhance water quality in aquatic systems remain poorly understood. To explore the water quality indicators and their correlation with nitrogen cycling-related functional genes, metagenomic analysis of element cycling was performed to identify nitrogen cycling-related functional genes in Coilia nasus aquatic water between the control group (C) and the groups supplemented with probiotics in feed (PF) or water (PW). The results showed that adding probiotics to the aquatic water could reduce the concentrations of ammonia nitrogen (NH4+-N), nitrite (NO2--N), and total nitrogen (TN) in the water. Community structure analysis revealed that the relative abundance of Verrucomicrobiota was increased from 30 d to 120 d (2.61% to 6.35%) in the PW group, while the relative abundance of Cyanobacteria was decreased from 30 d to 120 d (5.66% to 1.77%). We constructed a nitrogen cycling pathway diagram for C. nasus aquaculture ponds. The nitrogen cycle functional analysis showed that adding probiotics to the water could increase the relative abundance of the amoC_B and hao (Nitrification pathways) and the nirS and nosZ (Denitrification pathways). Correlation analysis revealed that NH4+-N was significantly negatively correlated with Limnohabitans, Sediminibacterium, and Algoriphagus, while NO2--N was significantly negatively correlated with Roseomonas and Rubrivivax. Our study demonstrated that adding probiotics to the water can promote nitrogen element conversion and migration, facilitate nitrogen cycling, benefit ecological environment protection, and remove nitrogen-containing compounds in aquaculture systems by altering the relative abundance of nitrogen cycling-related functional genes and microorganisms.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38643745

RESUMEN

With the development of large-scale intensive feeding, growth performance and animal welfare have attracted more and more attention. Exogenous probiotics can promote the growth performance of fish through improving intestinal microbiota; however, it remains unclear whether intestinal microbiota influence physiological biomarkers. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of a 90-day Lactiplantibacillus plantarum supplementation to a basal diet (1.0 × 108 CFU/g) on the growth performance, intestinal microbiota and their metabolites, and physiological biomarkers in Coilia nasus larvae. The results showed that the probiotic supplementation could significantly increase weight and body length. Moreover, it could also enhance digestive enzymes and tight junctions, and inhibit oxidative stress and inflammation. The metagenomic analysis showed that L. plantarum supplementation could significantly decrease the relative abundance of Proteobacteria and increase the relative abundance of Firmicutes. Additionally, pathogenic bacteria (Aeromonadaceae, Aeromonas, and Enterobacterales) were inhibited and beneficial bacteria (Bacillales) were promoted. The metabolome analysis showed that acetic acid and propanoic acid were significantly elevated, and were associated with Kitasatospora, Seonamhaeicola, and Thauera. A correlation analysis demonstrated that the digestive enzymes, tight junction, oxidative stress, and inflammation effects were significantly associated with the increased acetic acid and propanoic acid levels. These results indicated that L. plantarum supplementation could improve intestinal microbial community structure and function, which could raise acetic acid and propanoic acid levels to protect intestinal health and improve growth performance in C. nasus larvae.


Asunto(s)
Microbioma Gastrointestinal , Larva , Metaboloma , Probióticos , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Larva/microbiología , Larva/crecimiento & desarrollo , Metagenoma , Peces/microbiología , Intestinos/microbiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38145793

RESUMEN

Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.


Asunto(s)
Braquiuros , Herbicidas , Animales , Prometrina , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Herbicidas/toxicidad , Antioxidantes
5.
Virology ; 589: 109939, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979208

RESUMEN

Zika virus (ZIKV) belongs to Flaviviridae, the Flavivirus genus. Its infection causes congenital brain abnormalities and Guillain-Barré syndrome. However, there are no effective vaccines, no FDA-approved drugs to manage ZIKV infection. The non-structural protein NS5 of ZIKV has been recognized as a valuable target of antivirals because of its RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) activities essential for viral RNA synthesis. Here, we report a cell-based assay for discovering inhibitors of ZIKV NS5 and found that 5-Azacytidine potently inhibits ZIKV NS5, with EC50 of 4.9 µM. Furthermore, 5-Azacytidine suppresses ZIKV replication by inhibiting NS5-mediated viral RNA transcription. Therefore, we have developed a cell-based ZIKV NS5 assay which can be deployed to discover ZIKV NS5 inhibitors and demonstrated the potential of 5-Azacytidine for further development as a ZIKV NS5 inhibitor.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/genética , Infección por el Virus Zika/tratamiento farmacológico , Antivirales/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Azacitidina/farmacología , Azacitidina/metabolismo , Azacitidina/uso terapéutico , Replicación Viral
6.
Virology ; 595: 110088, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643657

RESUMEN

Human norovirus (HuNoV), a primary cause of non-bacterial gastroenteritis, currently lacks approved treatment. RdRp is vital for virus replication, making it an attractive target for therapeutic intervention. By application of structure-based virtual screening procedure, we present CX-6258 hydrochloride hydrate as a potent RdRp non-nucleoside inhibitor, effectively inhibiting HuNoV RdRp activity with an IC50 of 3.61 µM. Importantly, this compound inhibits viral replication in cell culture, with an EC50 of 0.88 µM. In vitro binding assay validate that CX-6258 hydrochloride hydrate binds to RdRp through interaction with the "B-site" binding pocket. Interestingly, CX-6258-contacting residues such as R392, Q439, and Q414 are highly conserved among major norovirus GI and GII variants, suggesting that it may be a general inhibitor of norovirus RdRp. Given that CX-6258 hydrochloride hydrate is already utilized as an orally efficacious pan-Pim kinase inhibitor, it may serve as a potential lead compound in the effort to control HuNoV infections.


Asunto(s)
Antivirales , Norovirus , ARN Polimerasa Dependiente del ARN , Replicación Viral , Norovirus/efectos de los fármacos , Norovirus/enzimología , Norovirus/genética , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , Antivirales/farmacología , Antivirales/química , Humanos , Replicación Viral/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Sitios de Unión
7.
Acta Pharm Sin B ; 14(6): 2520-2536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828143

RESUMEN

Type I interferon (IFN) inhibits a wide spectrum of viruses through stimulating the expression of antiviral proteins. As an IFN-induced protein, myxovirus resistance B (MXB) protein was reported to inhibit multiple highly pathogenic human viruses. It remains to be determined whether MXB employs a common mechanism to restrict different viruses. Here, we find that IFN alters the subcellular localization of hundreds of host proteins, and this IFN effect is partially lost upon MXB depletion. The results of our mechanistic study reveal that MXB recognizes vimentin (VIM) and recruits protein kinase B (AKT) to phosphorylate VIM at amino acid S38, which leads to reorganization of the VIM network and impairment of intracellular trafficking of virus protein complexes, hence causing a restriction of virus infection. These results highlight a new function of MXB in modulating VIM-mediated trafficking, which may lead towards a novel broad-spectrum antiviral strategy to control a large group of viruses that depend on VIM for successful replication.

8.
Int. microbiol ; 27(1): 167-178, Feb. 2024. graf
Artículo en Inglés | IBECS (España) | ID: ibc-230252

RESUMEN

The compound known as effective microorganisms (EMs) is widely used in aquaculture to improve water quality, but how they affect the health of Chinese mitten crab (Eriocheir sinensis) is unclear, especially in terms of intestinal microbiota and serum metabolites. In this study, we fed juvenile crabs with an EM-containing diet to explore the effects of EM on the physiological status, intestinal microbiome, and metabolites of E. sinensis. The activities of alanine aminotransferase and alkaline phosphatase were significantly enhanced by EM, indicating that EM supplementation effectively enhanced the antioxidant capacity of E. sinensis. Proteobacteria, Tenericutes, Firmicutes, Bacteroidetes, and Actinobacteria were the main intestinal microbes in both the control and EM groups. Linear discriminant effect size analysis showed that Fusobacteriaceae, Desulfovibrio, and Morganella were biomarkers in the control group, and Exiguobacterium and Rhodobacteraceae were biomarkers in the EM group. Metabolomics analysis revealed that EM supplementation increased cellular energy sources and decreased protein consumption, and oxidative stress. Together, these results indicate that EM can optimize the intestinal microbiome and serum metabolites, thereby benefiting the health of E. sinensis.(AU)


Asunto(s)
Humanos , Biomarcadores , Antioxidantes/farmacología , Microbioma Gastrointestinal , Inmunidad Innata , Xiphosura americana/farmacología , Dieta , Microbiología , Técnicas Microbiológicas , Actinobacteria/metabolismo , Bacteroidetes/metabolismo , Firmicutes , Proteobacteria , Tenericutes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA