Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 167: 40-51, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35314145

RESUMEN

RATIONALE: Mineralocorticoid receptor (MR) antagonists have been clinically used to treat heart failure. However, the underlying cellular and molecular mechanisms remain incompletely understood. METHODS AND RESULTS: Using osteoblast MR knockout (MRobko) mouse in combination with myocardial infarction (MI) model, we demonstrated that MR deficiency in osteoblasts significantly improved cardiac function, promoted myocardial healing, as well as attenuated cardiac hypertrophy, fibrosis and inflammatory response after MI. Gene expression profiling using RNA sequencing revealed suppressed expression of osteocalcin (OCN) in calvaria from MRobko mice compared to littermate control (MRfl/fl) mice with or without MI. Plasma levels of undercarboxylated OCN (ucOCN) were also markedly decreased in MRobko mice compared to MRfl/fl mice. Administration of ucOCN abolished the protective effects of osteoblast MR deficiency on infarcted hearts. Mechanistically, ucOCN treatment promoted proliferation and inflammatory cytokine secretion in macrophages. Spironolactone, an MR antagonist, significantly inhibited the expression and secretion of OCN in post-MI mice. More importantly, spironolactone decreased plasma levels of ucOCN and inflammatory cytokines in heart failure patients. CONCLUSIONS: MR deficiency in osteoblasts alleviates pathological ventricular remodeling after MI, likely through its regulation on OCN. Spironolactone may work through osteoblast MR/OCN axis to exert its therapeutic effects on pathological ventricular remodeling and heart failure in mice and human patients.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Humanos , Ratones , Antagonistas de Receptores de Mineralocorticoides/farmacología , Infarto del Miocardio/patología , Osteoblastos/metabolismo , Espironolactona , Remodelación Ventricular
2.
Clin Chem Lab Med ; 59(5): 955-963, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33554560

RESUMEN

OBJECTIVES: Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS: Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS: A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS: The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Dilatada/genética , Análisis Mutacional de ADN , Heterocigoto , Humanos , Proteínas con Homeodominio LIM , Factores de Transcripción MEF2/genética , Proteínas Musculares , Linaje , Factores de Transcripción
3.
Heart Vessels ; 34(4): 658-668, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30390123

RESUMEN

Congenital heart defect (CHD) is the most common form of birth deformity and is responsible for substantial morbidity and mortality in humans. Increasing evidence has convincingly demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disorder and the genetic basis underpinning CHD in the vast majority of cases remains elusive. This study was sought to identify the pathogenic mutation in the ISL1 gene contributing to CHD. A cohort of 210 unrelated patients with CHD and a total of 256 unrelated healthy individuals used as controls were registered. The coding exons and splicing boundaries of ISL1 were sequenced in all study subjects. The functional effect of an identified ISL1 mutation was evaluated using a dual-luciferase reporter assay system. A novel heterozygous ISL1 mutation, c.409G > T or p.E137X, was identified in an index patient with congenital patent ductus arteriosus and ventricular septal defect. Analysis of the proband's pedigree revealed that the mutation co-segregated with CHD, which was transmitted in the family in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in 512 control chromosomes. Functional analysis unveiled that the mutant ISL1 protein failed to transactivate the promoter of MEF2C, alone or in synergy with TBX20. This study firstly implicates ISL1 loss-of-function mutation with CHD in humans, which provides novel insight into the molecular mechanism of CHD, implying potential implications for genetic counseling and individually tailored treatment of CHD patients.


Asunto(s)
ADN/genética , Cardiopatías Congénitas/genética , Proteínas con Homeodominio LIM/genética , Mutación con Pérdida de Función , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Exones , Femenino , Cardiopatías Congénitas/metabolismo , Humanos , Lactante , Proteínas con Homeodominio LIM/metabolismo , Masculino , Linaje , Reacción en Cadena de la Polimerasa , Factores de Transcripción/metabolismo , Adulto Joven
4.
Int Heart J ; 60(5): 1113-1122, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31484864

RESUMEN

Occurring in about 1% of all live births, congenital heart defects (CHDs) represent the most frequent type of developmental abnormality and account for remarkably increased infant morbidity and mortality. Aggregating studies demonstrate that genetic components have a key role in the occurrence of CHDs. Nevertheless, due to pronounced genetic heterogeneity, the genetic causes of CHDs remain unclear in most patients. In this research, 114 unrelated patients affected with CHDs and 218 unrelated individuals without CHDs served as controls were recruited. The coding regions and splicing donors/acceptors of the ISL1 gene, which codes for a transcription factor required for proper cardiovascular development, were screened for mutations by sequencing in all study participants. The functional characteristics of an identified ISL1 mutation were delineated with a dual-luciferase reporter assay system. As a result, a new heterozygous ISL1 mutation, NM_002202.2: c.225C>G; p. (Tyr75*), was discovered in an index patient with double outlet right ventricle and ventricular septal defect. Analysis of the proband's family unveiled that the mutation co-segregated with the CHD phenotype. The nonsense mutation was absent in the 436 control chromosomes. Biological analysis showed that the mutant ISL1 protein had no transcriptional activity. Furthermore, the mutation nullified the synergistic activation between ISL1 and TBX20, another CHD-associated transcription factor. This research for the first time links an ISL1 loss-of-function mutation to double outlet right ventricle in humans, which adds insight to the molecular pathogenesis underpinning CHDs, suggesting potential implications for timely personalized management of CHD patients.


Asunto(s)
Ventrículo Derecho con Doble Salida/genética , Genes Reporteros/genética , Predisposición Genética a la Enfermedad/epidemiología , Proteínas con Homeodominio LIM/genética , Mutación con Pérdida de Función/genética , Factores de Transcripción/genética , Estudios de Casos y Controles , Causalidad , Preescolar , China/epidemiología , Ventrículo Derecho con Doble Salida/diagnóstico por imagen , Femenino , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Heterocigoto , Hospitales Universitarios , Humanos , Incidencia , Lactante , Masculino , Mutación , Linaje , Pronóstico , Estudios Retrospectivos , Medición de Riesgo
5.
Clin Chem Lab Med ; 56(3): 502-511, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28902616

RESUMEN

BACKGROUND: The MADS-box transcription factor myocyte enhancer factor 2C (MEF2C) is required for the cardiac development and postnatal adaptation and in mice-targeted disruption of the MEF2C gene results in dilated cardiomyopathy (DCM). However, in humans, the association of MEF2C variation with DCM remains to be investigated. METHODS: The coding regions and splicing boundaries of the MEF2C gene were sequenced in 172 unrelated patients with idiopathic DCM. The available close relatives of the index patient harboring an identified MEF2C mutation and 300 unrelated, ethnically matched healthy individuals used as controls were genotyped for MEF2C. The functional effect of the mutant MEF2C protein was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. RESULTS: A novel heterozygous MEF2C mutation, p.Y157X, was detected in an index patient with adult-onset DCM. Genetic screen of the mutation carrier's family members revealed that the mutation co-segregated with DCM, which was transmitted as an autosomal dominant trait with complete penetrance. The non-sense mutation was absent in 300 control individuals. Functional analyses unveiled that the mutant MEF2C protein had no transcriptional activity. Furthermore, the mutation abolished the synergistic transactivation between MEF2C and GATA4 as well as HAND1, two other transcription factors that have been associated with DCM. CONCLUSIONS: This study indicates MEF2C as a new gene responsible for human DCM, which provides novel insight into the mechanism underpinning DCM, suggesting potential implications for development of innovative prophylactic and therapeutic strategies for DCM, the most prevalent form of primary myocardial disease.


Asunto(s)
Cardiomiopatía Dilatada/genética , Adulto , Cardiomiopatía Dilatada/metabolismo , Femenino , Células HeLa , Humanos , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Células Tumorales Cultivadas
6.
Int J Med Sci ; 15(13): 1564-1572, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443179

RESUMEN

Atrial fibrillation (AF), as the most common sustained cardiac arrhythmia, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that genetic defects play a crucial role in the pathogenesis of AF, especially in familial AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of cases the genetic determinants underlying AF remain elusive. In the current study, 162 unrelated patients with familial AF and 238 unrelated healthy individuals served as controls were recruited. The coding exons and splicing junction sites of the SHOX2 gene, which encodes a homeobox-containing transcription factor essential for proper development and function of the cardiac conduction system, were sequenced in all study participants. The functional effect of the mutant SHOX2 protein was characterized with a dual-luciferase reporter assay system. As a result, a novel heterozygous SHOX2 mutation, c.580C>T or p.R194X, was identified in an index patient, which was absent from the 476 control chromosomes. Genetic analysis of the proband's pedigree revealed that the nonsense mutation co-segregated with AF in the family with complete penetrance. Functional assays demonstrated that the mutant SHOX2 protein had no transcriptional activity compared with its wild-type counterpart. In conclusion, this is the first report on the association of SHOX2 loss-of-function mutation with enhanced susceptibility to familial AF, which provides novel insight into the molecular mechanism underpinning AF, suggesting potential implications for genetic counseling and individualized management of AF patients.


Asunto(s)
Fibrilación Atrial/metabolismo , Proteínas de Homeodominio/metabolismo , Fibrilación Atrial/genética , Codón sin Sentido/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Heart Vessels ; 33(7): 722-732, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29445930

RESUMEN

Dilated cardiomyopathy (DCM) is a common primary myocardial disease leading to congestive heart failure, arrhythmia and sudden cardiac death. Increasing studies demonstrate substantial genetic determinants for DCM. Nevertheless, DCM is of substantial genetic heterogeneity, and the genetic basis for DCM in most patients remains unclear. The present study was sought to investigate the association of a genetic variant in the ZBTB17 gene with DCM. A cohort of 158 unrelated patients with idiopathic DCM and a total of 230 unrelated, ethnically matched healthy individuals used as controls were recruited. The coding exons and splicing boundaries of ZBTB17 were sequenced in all study participants. The functional effect of the mutant ZBTB17 was characterized by a dual-luciferase reporter assay system. A novel heterozygous ZBTB17 mutation, p.E243X, was discovered in an index patient. Genetic scan of the mutation carrier's available relatives showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband's pedigree revealed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in the 460 control chromosomes. Functional assays demonstrated that the truncated ZBTB17 protein had no transcriptional activity as compared with its wild-type counterpart. This study firstly associates ZBTB17 loss-of-function mutation with enhanced susceptibility to DCM in humans, which provides novel insight into the molecular mechanism underpinning DCM, implying potential implications for genetic counseling and personalized management of DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Predisposición Genética a la Enfermedad , Factores de Transcripción de Tipo Kruppel/genética , Mutación , Cardiomiopatía Dilatada/metabolismo , Análisis Mutacional de ADN , Exones , Femenino , Heterocigoto , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Dedos de Zinc
8.
Clin Chem Lab Med ; 55(9): 1417-1425, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28099117

RESUMEN

BACKGROUND: The zinc finger transcription factor CASZ1 plays a key role in cardiac development and postnatal adaptation, and in mice, deletion of the CASZ1 gene leads to dilated cardiomyopathy (DCM). However, in humans whether genetically defective CASZ1 contributes to DCM remains unclear. METHODS: The coding exons and splicing junction sites of the CASZ1 gene were sequenced in 138 unrelated patients with idiopathic DCM. The available family members of the index patient harboring an identified CASZ1 mutation and 200 unrelated, ethnically matched healthy individuals used as controls were genotyped for CASZ1. The functional characteristics of the mutant CASZ1 were analyzed in contrast to its wild-type counterpart using a luciferase reporter assay system. RESULTS: A novel heterozygous CASZ1 mutation, p.K351X, was identified in an index patient with DCM. Genetic analysis of the mutation carrier's family showed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 referential chromosomes, altered the amino acid that was highly conserved evolutionarily. Biological investigations revealed that the mutant CASZ1 had no transcriptional activity. CONCLUSIONS: The current study reveals CASZ1 as a new gene responsible for human DCM, which provides novel mechanistic insight and potential therapeutic target for CASZ1-associated DCM, implying potential implications in improved prophylactic and therapeutic strategies for DCM, the most common type of primary myocardial disease.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Cardiomiopatía Dilatada/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Mutación , Factores de Transcripción/metabolismo
9.
Int J Med Sci ; 14(4): 323-332, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553164

RESUMEN

Congenital heart disease (CHD), the most common form of developmental abnormality in humans, remains a leading cause of morbidity and mortality in neonates. Genetic defects have been recognized as the predominant causes of CHD. Nevertheless, CHD is of substantial genetic heterogeneity and the genetic defects underlying CHD in most cases remain unclear. In the current study, the coding regions and splicing junction sites of the TBX20 gene, which encodes a T-box transcription factor key to cardiovascular morphogenesis, were sequenced in 175 unrelated patients with CHD, and a novel heterozygous TBX20 mutation, p.K274X, was identified in an index patient with tetralogy of Fallot (TOF). Genetic analysis of the proband's available family members showed that his father, elder brother and son had also TOF. In addition, his father and elder brother had also atrial septal defect, and his niece had persistent truncus arteriosus and ventricular septal defect. Analysis of the pedigree revealed that the mutation co-segregated with CHD transmitted in an autosomal dominant fashion, with complete penetrance. The nonsense mutation, which was absent in the 800 control chromosomes, was predicted to produce a truncated protein with only the amino terminus and partial T-box domain left. Functional analyses by using a dual-luciferase reporter assay system showed that the mutant TBX20 lost the ability to transactivate the target gene ANF. Furthermore, the mutation reduced the synergistic activation between TBX20 and NKX2.5 as well as GATA4, two other transcriptional factors previously associated with various CHD, encompassing TOF. This study firstly links TBX20 loss-of-function mutation to familial TOF or sporadic persistent truncus arteriosus, providing novel insight into the molecular pathogenesis of CHD.


Asunto(s)
Cardiopatías Congénitas/genética , Defectos del Tabique Interatrial/genética , Proteínas de Dominio T Box/genética , Tetralogía de Fallot/genética , Tronco Arterial Persistente/genética , Secuencia de Aminoácidos , Niño , Preescolar , Femenino , Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/fisiopatología , Defectos del Tabique Interatrial/fisiopatología , Heterocigoto , Proteína Homeótica Nkx-2.5/genética , Humanos , Masculino , Mutación , Linaje , Tetralogía de Fallot/fisiopatología , Tronco Arterial Persistente/fisiopatología
10.
Int Heart J ; 58(4): 521-529, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28690296

RESUMEN

Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is a leading cause of congestive heart failure and the most common indication for heart transplantation. Recently, NKX2-5 mutations have been involved in the pathogenesis of familial DCM. However, the prevalence and spectrum of NKX2-5 mutations associated with sporadic DCM remain to be evaluated. In this study, the coding regions and flanking introns of the NKX2-5 gene, which encodes a cardiac transcription factor pivotal for cardiac development and structural remodeling, were sequenced in 210 unrelated patients with sporadic adult-onset DCM. A total of 300 unrelated healthy individuals used as controls were also genotyped for NKX2-5. The functional effect of the mutant NKX2-5 was investigated using a dual-luciferase reporter assay system. As a result, two novel heterozygous NKX2-5 mutations, p.R139W and p.E167X, were identified in 2 unrelated patients with sporadic adult-onset DCM, with a mutational prevalence of approximately 0.95%. The mutations were absent in 600 referential chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional assays revealed that the NKX2-5 mutants were associated with significantly reduced transcriptional activity. Furthermore, the mutations abrogated the synergistic activation between NKX2-5 and GATA4 as well as TBX20, two other cardiac key transcription factors that have been causally linked to adult-onset DCM. This study is the first to associate NKX2-5 loss-of-function mutations with enhanced susceptibility to sporadic DCM, which provides novel insight into the molecular etiology underpinning DCM, and suggests the potential implications for the genetic counseling and personalized treatment of the DCM patients.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Proteína Homeótica Nkx-2.5/genética , Mutación , Edad de Inicio , Cardiomiopatía Dilatada/epidemiología , Cardiomiopatía Dilatada/metabolismo , China/epidemiología , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Genes Reporteros/genética , Genotipo , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Prevalencia
11.
Clin Chem Lab Med ; 54(7): 1161-7, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581070

RESUMEN

BACKGROUND: The basic helix-loop-helix transcription factor HAND1 is essential for cardiac development and structural remodeling, and mutations in HAND1 have been causally linked to various congenital heart diseases. However, whether genetically compromised HAND1 predisposes to dilated cardiomyopathy (DCM) in humans remains unknown. METHODS: The whole coding region and splicing junctions of the HAND1 gene were sequenced in 140 unrelated patients with idiopathic DCM. The available family members of the index patient carrying an identified mutation and 260 unrelated ethnically matched healthy individuals used as controls were genotyped for HAND1. The functional effect of the mutant HAND1 was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. RESULTS: A novel heterozygous HAND1 mutation, p.R105X, was identified in a family with DCM transmitted as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. The nonsense mutation was absent in 520 control chromosomes. Functional analyses unveiled that the mutant HAND1 had no transcriptional activity. Furthermore, the mutation abolished the synergistic activation between HAND1 and GATA4, another crucial cardiac transcription factors that has been associated with various congenital cardiovascular malformations and DCM. CONCLUSIONS: This study firstly reports the association of HAND1 loss-of-function mutation with increased susceptibility to DCM in humans, which provides novel insight into the molecular mechanisms underpinning DCM.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Animales , Estudios de Casos y Controles , Femenino , Genotipo , Células HeLa , Humanos , Luciferasas , Masculino , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Linaje , Fenotipo
12.
Int J Med Sci ; 13(1): 60-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26917986

RESUMEN

Atrial fibrillation (AF), the most common type of cardiac rhythm disturbance encountered in clinical practice, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. A recent study has revealed that the TBX5 gene, which encodes a T-box transcription factor key to cardiovascular development, was associated with AF and atypical Holt-Oram syndrome. However, the prevalence and spectrum of TBX5 mutation in patients with lone AF remain unclear. In this study, the coding regions and splicing junction sites of TBX5 were sequenced in 192 unrelated patients with lone AF and 300 unrelated ethnically-matched healthy individuals used as controls. The causative potential of the identified TBX5 variation was evaluated by MutationTaster and PolyPhen-2. The functional effect of the mutant TBX5 was assayed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.H170D, was identified in a patient, with a mutational prevalence of approximately 0.52%. This mutation, which was absent in the 300 control individuals, altered the amino acid completely conserved evolutionarily across species, and was predicted to be disease-causing. Functional deciphers showed that the mutant TBX5 was associated with significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation between TBX5 and NKX2-5 or GATA4. The findings expand the mutational spectrum of TBX5 linked to AF and provide new evidence that dysfunctional TBX5 may contribute to lone AF.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Proteínas de Dominio T Box/genética , Adulto , Secuencia de Aminoácidos/genética , Fibrilación Atrial/patología , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad
13.
Biochem Biophys Res Commun ; 459(1): 166-71, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25725155

RESUMEN

The cardiac T-box transcription factor TBX5 is crucial for proper cardiovascular development, and mutations in TBX5 have been associated with various congenital heart diseases and arrhythmias in humans. However, whether mutated TBX5 contributes to dilated cardiomyopathy (DCM) remains unclear. In this study, the coding exons and flanking introns of the TBX5 gene were sequenced in 190 unrelated patients with idiopathic DCM. The available family members of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were genotyped for TBX5. The functional characteristics of the mutant TBX5 were explored in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.S154A, was identified in a family with DCM inherited in an autosomal dominant pattern, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 control chromosomes and the altered amino acid was completely conserved evolutionarily across various species. Functional assays revealed that the mutant TBX5 had significantly decreased transcriptional activity. Furthermore, the mutation markedly diminished the synergistic activation of TBX5 with NKX2-5 or GATA4, other two transcription factors causatively linked to DCM. This study firstly associates TBX5 loss-of-function mutation with enhanced susceptibility to DCM, providing novel insight into the molecular mechanisms of DCM, and suggesting the potential implications in the development of new treatment strategies for this common form of myocardial disorder.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mutación , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Adulto , Anciano , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Factores de Transcripción/metabolismo
14.
Pediatr Cardiol ; 36(3): 646-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25380965

RESUMEN

Congenital heart disease (CHD) is the most common birth defect and is the most prevalent non-infectious cause of infant death. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic determinants for CHD in an overwhelming majority of patients remain unknown. In this study, the coding regions and splice junctions of the NKX2.6 gene, which encodes a homeodomain transcription factor crucial for cardiovascular development, were sequenced in 210 unrelated CHD patients. As a result, a novel heterozygous NKX2.6 mutation, p.K152Q, was identified in an index patient with ventricular septal defect (VSD). Genetic analysis of the proband's available family members showed that the mutation cosegregated with VSD transmitted as an autosomal dominant trait with complete penetrance. The missense mutation was absent in 400 control chromosomes and the altered amino acid was completely conserved evolutionarily across species. Due to unknown transcriptional targets of NKX2.6, the functional characteristics of the identified mutation at transcriptional activity were analyzed by using NKX2.5 as a surrogate. Alignment between human NKX2.6 and NKX2.5 proteins displayed that K152Q-mutant NKX2.6 was equivalent to K158Q-mutant NKX2.5, and introduction of K158Q into NKX2.5 significantly reduced its transcriptional activating function when compared with its wild-type counterpart. This study firstly links NKX2.6 loss-of-function mutation with increased susceptibility to isolated VSD, providing novel insight into the molecular mechanism underpinning VSD and contributing to the development of new preventive and therapeutic strategies for this common form of CHD.


Asunto(s)
Defectos del Tabique Interventricular/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Adolescente , Niño , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
15.
Pediatr Cardiol ; 36(7): 1400-10, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25860641

RESUMEN

Congenital heart disease (CHD) is the most prevalent type of birth defect in humans and is the leading non-infectious cause of infant death worldwide. There is a growing body of evidence demonstrating that genetic defects play an important role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remains unclear. In this study, the coding exons and splice junction sites of the TBX1 gene, which encodes a T-box homeodomain transcription factor essential for proper cardiovascular morphogenesis, were sequenced in 230 unrelated children with CHD. The available family members of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were subsequently genotyped for TBX1. The functional effect of the TBX1 mutation was predicted by online program MutationTaster and characterized by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX1 mutation, p.Q277X, was identified in an index patient with double outlet right ventricle (DORV) and ventricular septal defect (VSD). Genetic analysis of the proband's available relatives showed that the mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily across species and was predicted to be disease-causing by MutationTaster. Biochemical analysis revealed that Q277X-mutant TBX1 lost transcriptional activating function when compared with its wild-type counterpart. This study firstly associates TBX1 loss-of-function mutation with enhanced susceptibility to DORV and VSD in humans, which provides novel insight into the molecular mechanism underlying CHD and suggests potential implications for the development of new preventive and therapeutic strategies for CHD.


Asunto(s)
Cardiopatías Congénitas/clasificación , Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Preescolar , Exones , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Mutación , Linaje
16.
Int J Med Sci ; 11(6): 554-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782644

RESUMEN

Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia in humans and is responsible for substantial morbidity and mortality worldwide. Emerging evidence indicates that abnormal cardiovascular development is involved in the pathogenesis of AF. In this study, the coding exons and splice sites of the NKX2-5 gene, which encodes a homeodomain-containing transcription factor essential for cardiovascular genesis, were sequenced in 146 unrelated patients with lone AF as well as the available relatives of the mutation carriers. A total of 700 unrelated ethnically matched healthy individuals used as controls were genotyped. The disease-causing potential of the identified NKX2-5 variations was predicted by MutationTaster and PolyPhen-2. The functional characteristics of the mutant NKX2-5 proteins were analyzed using a dual-luciferase reporter assay system. As a result, two heterozygous NKX2-5 mutations, including a previously reported p.E21Q and a novel p.T180A mutation, were identified in two families with AF transmitted in an autosomal dominant pattern. The mutations co-segregated with AF in the families with complete penetrance. The detected substitutions, which altered the amino acids highly conserved evolutionarily across species, were absent in 700 control individuals and were both predicted to be causative. Functional analyses demonstrated that the NKX2-5 mutants were associated with significantly decreased transcriptional activity compared with their wild-type counterpart. The findings expand the spectrum of NKX2-5 mutations linked to AF and provide additional evidence that dysfunctional NKX2-5 may confer vulnerability to AF, suggesting the potential benefit for the early prophylaxis and personalized treatment of AF.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Medicina de Precisión , Factores de Transcripción/genética , Adulto , Pueblo Asiatico , Fibrilación Atrial/patología , Femenino , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/química , Humanos , Masculino , Persona de Mediana Edad , Mutación , Sitios de Empalme de ARN/genética , Alineación de Secuencia , Relación Estructura-Actividad , Factores de Transcripción/química
17.
Neuro Endocrinol Lett ; 35(1): 80-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24625920

RESUMEN

OBJECTIVE: To observe effect of subclinical hypothyroidism (SCH) on serum lipid level and expression of toll-like receptor 4 (TLR4) in rats' peripheral blood mononuclear cells (PBMC). METHODS: Fifty Wistar female rats were divided into three groups: normal control (NC group; n=10), sham group (n=10), and L-T-4 (L-thyroxine) group (n=30, with thyroidectomy, fed with rich-calcium water after operation. 5 weeks later, abdominal subcutaneous injection of L-T-4: 0.95 µg/100g/d). 8 weeks later, the rats were killed then the peripheral blood was collected to determine the levels of serum thyroid-stimulating hormone (TSH), total thyroid hormone (TT4), total cholesterol (TC) and low density lipoprotein cholesterin (LDL-C). Rats in L-T-4 group were divided into normal lipid (NL) group) and high lipid (HL) group) according to lipid value of NC group. Monocytes were separated from blood to determine TLR4 expression by flow cytometry. RESULTS: In NL and HL groups TSH were higher than in NC and Sham groups (p<0.05). TT4 have no significant differences (p>0.05). TLR4, TLR4 mRNA, NF-κB (p65) were increased (p<0.05). TNF-α, IL-6 and IL-1ß were higher than in NC and sham groups (p<0.01). There were no significant differences of TLR4, TLR4 mRNA, NF-κB (p65), TNF-α, IL-6 and IL-1ß expression between NL and HL groups (p>0.05). CONCLUSION: TLR4, TLR4 mRNA, NF-κB (p65) of PBMC and TNF-α, IL-6, IL-1ß expression in serum were all increased in SCH rats, which was not related to serum dyslipidemia.


Asunto(s)
Hipotiroidismo/inmunología , Hipotiroidismo/patología , Monocitos/inmunología , Monocitos/metabolismo , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 4/sangre , Animales , Colesterol/biosíntesis , Colesterol/sangre , LDL-Colesterol/biosíntesis , LDL-Colesterol/sangre , Citocinas/biosíntesis , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Hipotiroidismo/sangre , Monocitos/patología , ARN Mensajero/biosíntesis , ARN Mensajero/sangre , Ratas , Ratas Wistar , Hormonas Tiroideas/biosíntesis , Hormonas Tiroideas/sangre , Tirotropina/biosíntesis , Tirotropina/sangre , Tiroxina/administración & dosificación , Tiroxina/biosíntesis , Tiroxina/sangre , Tiroxina/toxicidad
18.
Hum Mutat ; 34(4): 603-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23348765

RESUMEN

Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia worldwide. Here, we investigate the molecular and cellular mechanisms of lone AF-linked germline mutations in the connexin40 (Cx40) gene, GJA5. The entire coding region of GJA5 was sequenced in 68 unrelated patients with lone AF. A novel germline heterozygous missense mutation in Cx40 (p.I75F) was identified in one index patient. The mutation was also present in the proband's father with lone AF but was not found in the unaffected family members who were examined and 200 unrelated healthy control individuals. Electrophysiological studies revealed no electrical coupling of the cell pairs expressing the mutant alone and a significant reduction in gap junction coupling conductance when the mutant was coexpressed with wild-type (wt) Cx40 or Cx43. Interestingly, another lone AF-linked Cx40 mutant p.L229M did not show any apparent coupling defect when expressed alone or together with wt Cx40 but specifically reduced the gap junction coupling when coexpressed with wt Cx43. This study is the first to demonstrate that the germline familial mutations in Cx40 impair the gap junctions through different mechanisms, which may predispose the mutant carriers to AF.


Asunto(s)
Fibrilación Atrial/genética , Comunicación Celular/genética , Conexinas/genética , Uniones Comunicantes/genética , Mutación de Línea Germinal , Fibrilación Atrial/metabolismo , Secuencia de Bases , Línea Celular , Conexinas/metabolismo , Femenino , Genotipo , Humanos , Masculino , Técnicas de Placa-Clamp , Linaje , Transporte de Proteínas , Proteína alfa-5 de Unión Comunicante
19.
Hum Mutat ; 34(12): 1662-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24000169

RESUMEN

Tetralogy of Fallot (TOF) represents the most common form of cyanotic congenital heart disease and accounts for significant morbidity and mortality in humans. Emerging evidence has implicated genetic defects in the pathogenesis of TOF. However, TOF is genetically heterogeneous and the genetic basis for TOF in most patients remains unclear. In this study, the GATA4 gene were sequenced in 52 probands with familial TOF, and three novel heterozygous mutations, including A9P and L51V both located in the putative first transactivational domain and N285S in the C-terminal zinc finger, were identified in three probands, respectively. Genetic analysis of the pedigrees demonstrated that in each family the mutation cosegregated with TOF with complete penetrance. The missense mutations were absent in 800 control chromosomes and the altered amino acids were highly conserved evolutionarily. Functional analysis showed that the GATA4 mutants were consistently associated with diminished DNA-binding affinity and decreased transcriptional activity. Furthermore, the N285S mutation completely disrupted the physical interaction between GATA4 and TBX5. To our knowledge, this report associates GATA4 loss-of-function mutations with familial TOF for the first time, providing novel insight into the molecular mechanism involved in TOF and suggesting potential implications for the early prophylaxis and allele-specific therapy of TOF.


Asunto(s)
Factor de Transcripción GATA4/genética , Mutación , Tetralogía de Fallot/genética , Adolescente , Adulto , Alelos , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Factor de Transcripción GATA4/química , Factor de Transcripción GATA4/metabolismo , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Unión Proteica , Transporte de Proteínas , Alineación de Secuencia , Proteínas de Dominio T Box/metabolismo , Tetralogía de Fallot/diagnóstico , Transcripción Genética , Adulto Joven
20.
Biochem Biophys Res Commun ; 439(4): 591-6, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24041700

RESUMEN

The cardiac transcription factor GATA4 is essential for cardiac development, and mutations in this gene have been implicated in a wide variety of congenital heart diseases in both animal models and humans. However, whether mutated GATA4 predisposes to dilated cardiomyopathy (DCM) remains unknown. In this study, the whole coding region and splice junction sites of the GATA4 gene was sequenced in 110 unrelated patients with idiopathic DCM. The available relatives of the index patient harboring an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were genotyped. The functional effect of the mutant GATA4 was characterized in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, a novel heterozygous GATA4 mutation, p.C271S, was identified in a family with DCM inherited as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 control chromosomes and the altered amino acid was completely conserved evolutionarily among species. Functional analysis demonstrated that the GATA4 mutant was associated with significantly decreased transcriptional activity and remarkably reduced synergistic activation between GATA4 and NKX2-5, another transcription factor crucial for cardiogenesis. The findings provide novel insight into the molecular mechanisms involved in the pathogenesis of DCM, suggesting the potential implications in the prenatal diagnosis and gene-specific treatment for this common form of myocardial disorder.


Asunto(s)
Cardiomiopatía Dilatada/genética , Factor de Transcripción GATA4/genética , Mutación , Adulto , Femenino , Factor de Transcripción GATA4/metabolismo , Predisposición Genética a la Enfermedad , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA