Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 244: 117866, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061590

RESUMEN

Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.


Asunto(s)
Celulasa , Celulasa/genética , Celulasa/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Fermentación
2.
J Environ Manage ; 154: 1-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25700350

RESUMEN

A novel fully passive permeable reactive barrier (PRB) with oxygen-releasing compound (ORC) and clinoptilolite was proposed for the removal of ammonium-nitrogen from groundwater. The PRB involves a combination of oxygen release, biological nitrification, ion exchange, and bioregeneration. A pilot-scale performance comparison experiment was carried out employing three parallel columns to assess the proposed PRB. The results showed that the PRB achieved nearly complete [Formula: see text] depletion (>99%). [Formula: see text] of 5.23-10.88 mg/L was removed, and [Formula: see text] of <1.93 mg/L and [Formula: see text] of 2.03-19.67 mg/L were generated. Ion exchange and biological nitrification both contributed to [Formula: see text] removal, and the latter played a dominant role under the condition of sufficient oxygen. Biological nitrification favored a delay in sorption saturation and a release of exchange sites. The ORC could sufficiently, efficiently supply oxygen for approximately 120 pore volumes. The clinoptilolite ensured a robust [Formula: see text] removal in case of temporary insufficient biological activities. No external alkalinity sources had to be supplied and no inhibition of aerobic metabolism occurred. The ceramicite had a negligible effect on the biomass growth. Based on the research findings, a full-scale continuous wall PRB was installed in Shenyang, China in 2012.


Asunto(s)
Compuestos de Amonio/metabolismo , Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Compuestos de Amonio/química , Desnitrificación , Intercambio Iónico , Nitratos/química , Oxígeno/análisis , Contaminantes Químicos del Agua/química , Zeolitas
3.
Water Sci Technol ; 70(9): 1540-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401319

RESUMEN

In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH(4)(+)-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH(4)(+)-N was microbially oxidized to nitrate. Any remaining NH(4)(+)-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH(4)(+)-N was consistently removed, and approximately 40% of the influent NH(4)(+)-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH(4)(+)-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH(4)(+)-N removal.


Asunto(s)
Compuestos de Amonio/metabolismo , Agua Subterránea/análisis , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Zeolitas/metabolismo , Adsorción , Oxidación-Reducción , Proyectos Piloto
4.
Bioresour Technol ; 406: 131027, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925411

RESUMEN

In this study, the feasibility of promoting the lactic acid (LA) fermentation of food waste (FW) with iron tailings (ITs) addition was explored. The best LA yield was 0.91 g LA/g total sugar when 1 % ITs were added into the system. The mechanisms for promoting LA production were acidification alleviation effects and reduction equivalent supply of ITs. Furthermore, the addition of ITs promoted carbohydrate hydrolysis, and the carbohydrates digestibility reached 88.85 % in the 1 % ITs group. The ITs also affected the microbial communities, Lactococcus gradually replaced Streptococcus as the dominant genus, and results suggested that Lactococcus had a positive correlation with LA production and carbohydrate digestibility. Finally, the complex LAB in FW had significant effects on heavy metal removal from ITs, and the removal efficiency Cr, As, Pb, Cd, and Hg can reach 50.84 %, 26.72 %, 59.65 %, 49.75 % and 78.87 % in the 1 % ITs group, respectively.


Asunto(s)
Fermentación , Hierro , Ácido Láctico , Hierro/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Metales Pesados , Alimentos , Residuos , Hidrólisis , Concentración de Iones de Hidrógeno , Lactococcus/metabolismo , Alimento Perdido y Desperdiciado
5.
Sci Total Environ ; 929: 172656, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653420

RESUMEN

There has been increasing concern regarding the adverse environmental and health effects of organic pollutants. A list of priority control organic pollutants (PCOPs) can provide regulatory frameworks for the use and monitoring of organic compounds in the environment. In this study, 20,010 groundwater samples were collected from 15 "first level" groundwater resource zones in China. Fifty (50) organic compounds were analyzed based on their prevalence, occurrence, and physicochemical properties (persistence, bioaccumulation, and toxicity). Results showed that 16 PCOPs, including 12 pesticides, 3 aromatic hydrocarbons (AHs), and 1 phthalate ester, were recognized. Pesticides and AHs accounted for 75 % and 18.75 % of the high-priority pollutants, respectively. There were significant differences in PCOPs between confined and phreatic groundwater. Higher concentrations of pesticides were mainly detected in phreatic groundwater. PCOPs detected in samples from the 15 groundwater resource zones were mainly pesticides and AHs. The groundwater data indicate that the organic compounds detected in the Yellow River Basin (YRB), Yangtze River Basin (YZB), Liaohe River Basin (LRB), and Songhua River Basin (SRB) are mainly categorized as Q1 (high priority) and Q2 (medium priority) pollutants based on the contaminants ranking system in China. The findings from this study offer a snapshot of the wide distribution of PCOPs in the surveyed regions, and are expected to establishing treatment and prevention measures at both the regional and national levels in China.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Bioacumulación , Plaguicidas/análisis , Compuestos Orgánicos/análisis
6.
RSC Adv ; 8(30): 16834-16841, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35540539

RESUMEN

Activated carbon (AC) is widely used in groundwater remediation, more specifically, for the activated carbon permeable barriers (AC-PRBs). However, the long-term use of AC-PRBs is limited by the AC's adsorption capacity. In this work, a Fenton-combined persulfate system (Fe2+/H2O2/S2O8 2-) was used to treat activated carbon that was saturated with organic compounds, such as trichloroethylene (TCE), to promote the oxidation of the adsorbed contaminants and the regeneration of AC. The effect of pH and the calcium ion (Ca2+) were investigated during AC's adsorption/regeneration. The results showed that under certain reaction conditions (TCE/Fe2+/H2O2/S2O8 2- molar ratio of 1.00/9.00/56.63/76.25), acidic pH conditions (pH = 3) favored the adsorption/regeneration process of AC, yielding a regeneration efficiency of 26.28% on average in three regeneration cycles. The presence of Ca2+, even in relatively low concentrations, seemed to decrease HO˙ generation and AC's adsorption capacity.

7.
Nat Commun ; 8(1): 568, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924176

RESUMEN

Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

8.
Environ Sci Pollut Res Int ; 23(1): 402-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26308917

RESUMEN

Benzoic acid can affect the iron-oxide mineral dissolution and react with hydroxyl radical. This study investigated its effect on 1,2-dichloroethane removal process by siderite-catalyzed hydrogen peroxide and persulfate. The variation of benzoic acid concentrations can affect pH value and soluble iron concentrations; when benzoic acid varied from 0 to 0.5 mmol/L, pH increased while Fe(2+) and Fe(3+) concentrations decreased, resulting in 1,2-dichloroethane removal efficiency which decreased from 91.2 to 5.0%. However, when benzoic acid varied from 0.5 to 10 mmol/L, pH decreased while Fe(2+) and Fe(3+) concentrations increased, resulting in 1,2-dichloroethane removal efficiency which increased from 5.0 to 83.4%.


Asunto(s)
Ácido Benzoico/química , Carbonatos/química , Restauración y Remediación Ambiental/métodos , Dicloruros de Etileno/química , Compuestos Férricos/química , Peróxido de Hidrógeno/química , Catálisis , Radical Hidroxilo/química
9.
Environ Sci Pollut Res Int ; 22(5): 3705-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25256584

RESUMEN

A novel sequential permeable reactive barrier (multibarrier), composed of oxygen-releasing compound (ORC)/clinoptilolite/spongy iron zones in series, was proposed for ammonium-nitrogen-contaminated groundwater remediation. Column experiments were performed to: (1) evaluate the overall NH4(+)-N removal performance of the proposed multibarrier, (2) investigate nitrogen transformation in the three zones, (3) determine the reaction front progress, and (4) explore cleanup mechanisms for inorganic nitrogens. The results showed that NH4 (+)-N percent removal by the multibarrier increased up to 90.43 % after 21 pore volumes (PVs) at the influent dissolved oxygen of 0.68∼2.45 mg/L and pH of 6.76∼7.42. NH4(+)-N of 4.06∼10.49 mg/L was depleted and NOx(-)-N (i.e., NO3 (-)-N + NO2(-)-N) of 4.26∼9.63 mg/L was formed before 98 PVs in the ORC zone. NH4(+)-N of ≤4.76 mg/L was eliminated in the clinoptilolite zone. NOx(-)-N of 10.44∼12.80 mg/L was lost before 21 PVs in the spongy iron zone. The clinoptilolite zone length should be reduced to 30 cm. Microbial nitrification played a dominant role in NH4(+)-N removal in the ORC zone. Ion exchange was majorly responsible for NH4(+)-N elimination in the clinoptilolite zone. Chemical reduction and hydrogenotrophic denitrification both contributed to NOx(-)-N transformation, but the chemical reduction capacity decreased after 21 PVs in the spongy iron.


Asunto(s)
Compuestos de Amonio/análisis , Restauración y Remediación Ambiental/instrumentación , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Animales , Restauración y Remediación Ambiental/métodos , Intercambio Iónico , Compuestos de Hierro/química , Oxígeno , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA