Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132845

RESUMEN

Stimulator of IFN genes (STING; also known as STING1) is an important adaptor protein for detecting cytosolic double-stranded DNA, which can come from HIV infection. Several HIV proteins, such as p6, Vpx and Vif, can influence STING-mediated innate immunity, but the function of p17 is still unknown. In this study, we find that HIV-1 p17, but not HIV-2 p17 or SIV p17, promotes STING signaling induced by cyclic GMP-AMP (cGAMP) treatment. Mechanistically, HIV-1 p17 binds to Obg-like ATPase 1 (OLA1) and inhibits the regulation of STING by OLA1. Here, OLA1 interacts with STING and inhibits the translocation and phosphorylation of STING upon cGAMP stimulation. Furthermore, compared with HIV-2 and SIV, the ATPase and GTPase activities of OLA1 are only promoted by HIV-1 p17. Our study shows that the p17 of HIV-1, but not HIV-2 or SIV, promotes STING-mediated innate immunity by interfering the interaction between OLA1 and STING, thus providing a new clue for specific immune activation of HIV-1.


Asunto(s)
Infecciones por VIH , VIH-1 , Interferón Tipo I , Humanos , VIH-1/metabolismo , Inmunidad Innata/genética , Adenosina Trifosfatasas/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión al GTP/metabolismo
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426321

RESUMEN

The common loci represent a distinct set of the human genome sites that harbor genetic variants found in at least 1% of the population. Small somatic mutations occur at the common loci and non-common loci, i.e. csmVariants and ncsmVariants, are presumed with similar probabilities. However, our work revealed that within the coding region, common loci constituted only 1.03% of all loci, yet they accounted for 5.14% of TCGA somatic mutations. Furthermore, the small somatic mutation incidence rate at these common loci was 2.7 times that observed in the non-common. Notably, the csmVariants exhibited an impressive recurrent rate of 36.14%, which was 2.59 times of the ncsmVariants. The C-to-T transition at the CpG sites accounted for 32.41% of the csmVariants, which was 2.93 times for the ncsmVariants. Interestingly, the aging-related mutational signature contributed to 13.87% of the csmVariants, 5.5 times that of ncsmVariants. Moreover, 35.93% of the csmVariants contexts exhibited palindromic features, outperforming ncsmVariant contexts by 1.84 times. Notably, cancer patients with higher csmVariants rates had better progression-free survival. Furthermore, cancer patients with high-frequency csmVariants enriched with mismatch repair deficiency were also associated with better progression-free survival. The accumulation of csmVariants during cancerogenesis is a complex process influenced by various factors. These include the presence of a substantial percentage of palindromic sequences at csmVariants sites, the impact of aging and DNA mismatch repair deficiency. Together, these factors contribute to the higher somatic mutation incidence rates of common loci and the overall accumulation of csmVariants in cancer development.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Incidencia , Neoplasias Encefálicas/genética , Mutación
3.
Nucleic Acids Res ; 52(14): e61, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38884260

RESUMEN

Horizontal gene transfer (HGT) phenomena pervade the gut microbiome and significantly impact human health. Yet, no current method can accurately identify complete HGT events, including the transferred sequence and the associated deletion and insertion breakpoints from shotgun metagenomic data. Here, we develop LocalHGT, which facilitates the reliable and swift detection of complete HGT events from shotgun metagenomic data, delivering an accuracy of 99.4%-verified by Nanopore data-across 200 gut microbiome samples, and achieving an average F1 score of 0.99 on 100 simulated data. LocalHGT enables a systematic characterization of HGT events within the human gut microbiome across 2098 samples, revealing that multiple recipient genome sites can become targets of a transferred sequence, microhomology is enriched in HGT breakpoint junctions (P-value = 3.3e-58), and HGTs can function as host-specific fingerprints indicated by the significantly higher HGT similarity of intra-personal temporal samples than inter-personal samples (P-value = 4.3e-303). Crucially, HGTs showed potential contributions to colorectal cancer (CRC) and acute diarrhoea, as evidenced by the enrichment of the butyrate metabolism pathway (P-value = 3.8e-17) and the shigellosis pathway (P-value = 5.9e-13) in the respective associated HGTs. Furthermore, differential HGTs demonstrated promise as biomarkers for predicting various diseases. Integrating HGTs into a CRC prediction model achieved an AUC of 0.87.


Asunto(s)
Microbioma Gastrointestinal , Transferencia de Gen Horizontal , Metagenómica , Humanos , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Diarrea/microbiología , Diarrea/genética , Bacterias/genética , Bacterias/clasificación
4.
Genet Epidemiol ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472646

RESUMEN

A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.

5.
Genet Epidemiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504141

RESUMEN

Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.

6.
J Biol Chem ; 300(6): 107307, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657868

RESUMEN

African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Caspasa 3 , Caspasas Iniciadoras , Piroptosis , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/patología , Porcinos , Caspasa 3/metabolismo , Caspasa 3/genética , Caspasas Iniciadoras/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión a Fosfato/metabolismo , Células HEK293 , Replicación Viral
7.
Plant J ; 118(5): 1413-1422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341804

RESUMEN

Mung bean (Vigna radiata) stands as a crucial legume crop in Asia, contributing to food security. However, our understanding of the underlying genetic foundation governing domesticated agronomic traits, especially those linked to pod architecture, remains largely unexplored. In this study, we delved into the genomic divergence between wild and domesticated mung bean varieties, leveraging germplasm obtained from diverse sources. Our findings unveiled pronounced variation in promoter regions (35%) between the two mung bean subpopulations, suggesting substantial changes in gene expression patterns during domestication. Leveraging transcriptome analysis using distinct reproductive stage pods and subpopulations, we identified candidate genes responsible for pod and seed architecture development, along with Genome-Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL) analysis. Notably, our research conclusively confirmed PDH1 as a parallel domesticated gene governing pod dehiscence in legumes. This study imparts valuable insights into the genetic underpinnings of domesticated agronomic traits in mung bean, and simultaneously highlighting the parallel domestication of pivotal traits within the realm of legume crops.


Asunto(s)
Productos Agrícolas , Domesticación , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Vigna , Vigna/genética , Sitios de Carácter Cuantitativo/genética , Productos Agrícolas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Genoma de Planta/genética , Regulación de la Expresión Génica de las Plantas , Genómica , Fenotipo
8.
Plant J ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158506

RESUMEN

C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.

9.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324417

RESUMEN

Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.


Asunto(s)
Núcleo Celular , Mitocondrias , Núcleo Celular/genética , Mitocondrias/genética , Genoma , Polimorfismo Genético , Plantas/genética
10.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289108

RESUMEN

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/fisiología , Porcinos , Vacunación
11.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38603603

RESUMEN

MOTIVATION: Genome sequencing technologies reveal a huge amount of genomic sequences. Neural network-based methods can be prime candidates for retrieving insights from these sequences because of their applicability to large and diverse datasets. However, the highly variable lengths of genome sequences severely impair the presentation of sequences as input to the neural network. Genetic variations further complicate tasks that involve sequence comparison or alignment. RESULTS: Inspired by the theory and applications of "spaced seeds," we propose a graph representation of genome sequences called "gapped pattern graph." These graphs can be transformed through a Graph Convolutional Network to form lower-dimensional embeddings for downstream tasks. On the basis of the gapped pattern graphs, we implemented a neural network model and demonstrated its performance on diverse tasks involving microbe and mammalian genome data. Our method consistently outperformed all the other state-of-the-art methods across various metrics on all tasks, especially for the sequences with limited homology to the training data. In addition, our model was able to identify distinct gapped pattern signatures from the sequences. AVAILABILITY AND IMPLEMENTATION: The framework is available at https://github.com/deepomicslab/GCNFrame.

12.
Bioinformatics ; 40(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950175

RESUMEN

MOTIVATION: T cell receptors (TCRs) constitute a major component of our adaptive immune system, governing the recognition and response to internal and external antigens. Studying the TCR diversity via sequencing technology is critical for a deeper understanding of immune dynamics. However, library sizes differ substantially across samples, hindering the accurate estimation/comparisons of alpha diversities. To address this, researchers frequently use an overall rarefying approach in which all samples are sub-sampled to an even depth. Despite its pervasive application, its efficacy has never been rigorously assessed. RESULTS: In this paper, we develop an innovative "multi-bin" rarefying approach that partitions samples into multiple bins according to their library sizes, conducts rarefying within each bin for alpha diversity calculations, and performs meta-analysis across bins. Extensive simulations using real-world data highlight the inadequacy of the overall rarefying approach in controlling the confounding effect of library size. Our method proves robust in addressing library size confounding, outperforming competing normalization strategies by achieving better-controlled type-I error rates and enhanced statistical power in association tests. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/mli171/MultibinAlpha. The datasets are freely available at https://doi.org/10.21417/B7001Z and https://doi.org/10.21417/AR2019NC.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Biblioteca de Genes , Variación Genética
13.
Stem Cells ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097775

RESUMEN

It has been documented that caspase 3 activity is necessary for skeletal muscle regeneration, but how its activity is regulated is largely unknown. Our previous report shows that intracellular TMEM16A, a calcium activated chloride channel, significantly regulates caspase 3 activity in myoblasts during skeletal muscle development. By using a mouse line with satellite cell (SC)-specific deletion of TMEM16A, we examined the role of TMEM16A in regulating caspase 3 activity in SC (or SC-derived myoblast) as well as skeletal muscle regeneration. The mutant animals displayed apparently impaired regeneration capacity in adult muscle along with enhanced ER stress and elevated caspase 3 activity in Tmem16a-/- SC derived myoblasts. Blockade of either excessive ER stress or caspase 3 activity by small molecules significantly restored the inhibited myogenic differentiation of Tmem16a-/- SCs, indicating that excessive caspase 3 activity resulted from TMEM16A deletion contributes to the impaired muscle regeneration and the upstream regulator of caspase 3 was ER stress. Our results revealed an essential role of TMEM16A in satellite cell mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity.

14.
FASEB J ; 38(3): e23449, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315451

RESUMEN

Adipose tissue is the second most important site of estrogen production, where androgens are converted into estrogen by aromatase. While gastric cancer patients often develop adipocyte-rich peritoneal metastasis, the underlying mechanism remains unclear. In this study, we identified the G-protein-coupled estrogen receptor (GPER1) as a promoter of gastric cancer peritoneal metastasis. Functional in vitro studies revealed that ß-Estradiol (E2) or the GPER1 agonist G1 inhibited anoikis in gastric cancer cells. Additionally, genetic overexpression or knockout of GPER1 significantly inhibited or enhanced gastric cancer cell anoikis in vitro and peritoneal metastasis in vivo, respectively. Mechanically, GPER1 knockout disrupted the NADPH pool and increased reactive oxygen species (ROS) generation. Conversely, overexpression of GPER1 had the opposite effects. GPER1 suppressed nicotinamide adenine dinucleotide kinase 1(NADK1) ubiquitination and promoted its phosphorylation, which were responsible for the elevated expression of NADK1 at protein levels and activity, respectively. Moreover, genetic inhibition of NADK1 disrupted NADPH and redox homeostasis, leading to high levels of ROS and significant anoikis, which inhibited lung and peritoneal metastasis in cell-based xenograft models. In summary, our study suggests that inhibiting GPER1-mediated NADK1 activity and its ubiquitination may be a promising therapeutic strategy for peritoneal metastasis of gastric cancer.


Asunto(s)
Neoplasias Peritoneales , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Neoplasias Gástricas , Humanos , Estrógenos/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Neoplasias Peritoneales/secundario , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/patología , Animales
15.
Artículo en Inglés | MEDLINE | ID: mdl-38422471

RESUMEN

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. This systematic review synthesizes evidence from epigenome-wide association studies (EWAS) related to COPD and lung function. METHODS: Systematic literature search on PubMed, Embase and CINAHL databases, identified 1947 articles that investigated epigenetic changes associated with COPD/lung function; 17 of them met our eligibility criteria from which data was manually extracted. Differentially methylated positions (DMPs) and/or annotated genes, were considered replicated if identified by ≥2 studies with a p<1 x 10-4. RESULTS: Ten studies profiled DNA methylation changes in blood and 7 in respiratory samples, including surgically resected lung tissue (n=3), small airways epithelial brushings (n=2), bronchoalveolar lavage (n=1) and sputum (n=1). Main results showed: (1) high variability in study design, covariates and effect sizes, which prevented a formal meta-analysis; (2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; (3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and, (4) in COPD vs. control studies, 123 genes (2.6% of total) were shared between ≥1 blood and ≥1 respiratory sample and associated with chronic inflammation, ion transport and coagulation. CONCLUSIONS: There is high heterogeneity across published COPD/lung function EWAS studies. A few genes (n=123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research.

16.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38178655

RESUMEN

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

17.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691098

RESUMEN

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

18.
J Am Chem Soc ; 146(5): 3262-3269, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270463

RESUMEN

We present time-resolved X-ray absorption spectra of ionized liquid water and demonstrate that OH radicals, H3O+ ions, and solvated electrons all leave distinct X-ray-spectroscopic signatures. Particularly, this allows us to characterize the electron solvation process through a tool that focuses on the electronic response of oxygen atoms in the immediate vicinity of a solvated electron. Our experimental results, supported by ab initio calculations, confirm the formation of a cavity in which the solvated electron is trapped. We show that the solvation dynamics are governed by the magnitude of the random structural fluctuations present in water. As a consequence, the solvation time is highly sensitive to temperature and to the specific way the electron is injected into water.

19.
Lab Invest ; 104(8): 102090, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830579

RESUMEN

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Inmunoterapia , Oxaliplatino , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Resistencia a Antineoplásicos/genética , Inmunoterapia/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Masculino , Femenino , Pronóstico , Persona de Mediana Edad
20.
BMC Plant Biol ; 24(1): 188, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486139

RESUMEN

BACKGROUND: Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS: SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS: This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA