RESUMEN
GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.
Asunto(s)
ADN Helicasas , ARN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas con Motivos de Reconocimiento de ARN , Regiones no Traducidas 5' , Cuerpos de Inclusión Intranucleares , Ribosomas , Expansión de Repetición de Trinucleótido/genéticaRESUMEN
BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.
Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Encéfalo/diagnóstico por imagen , Polimorfismo de Nucleótido Simple/genética , Sitios GenéticosRESUMEN
BACKGROUND: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine. METHODS: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes. RESULTS: We identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine. CONCLUSIONS: Our proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.
Asunto(s)
Trastornos Migrañosos , Proteoma , Humanos , Proteoma/genética , Estudio de Asociación del Genoma Completo , Proteómica , Transcriptoma , Trastornos Migrañosos/genéticaRESUMEN
BACKGROUND & AIMS: Biallelic pathogenic variants in MYO5B cause microvillus inclusion disease (MVID), or familial intrahepatic cholestasis (FIC). The reported FIC patients are scarce and so the genotype-phenotype correlation has not been fully characterised. This study aimed to report more MYO5B-associated FIC patients and correlate genotypes to phenotypes in more detail. METHODS: The phenotype and genetic data of 12 newly diagnosed MYO5B-associated (including 11 FIC) patients, as well as 118 previously reported patients with available genotypes, were summarised. Only patients with biallelic MYO5B variants were enrolled. Nonsense, frameshift, canonical splice sites, initiation codon loss, and single exon or multiexon deletion were defined as null MYO5B variants. RESULTS: Phenotypically, 50 were isolated MVID, 47 involved both liver and intestine (combined), and 33 were isolated FIC (9 persistent, 15 recurrent, 3 transient, and 6 un-sub-classified) patients. The severity of intestinal manifestation was positively correlated to an increased number of null variants (ρ = 0.299, P = .001). All FIC patients carried at least one non-null variant, and the severity of cholestasis was correlated to the presence of a null variant (ρ = 0.420, P = .029). The proportion of FIC patients (16/29, 55%) harbouring missense/in-frame variants affecting the non-motor regions of MYO5B was significantly higher than that of MVID (3/25, 12%, P = .001) and combined patients (3/31, 10%, P = .000). 10 of the 29 FIC patients harboured missense/in-frame variants at the IQ motifs comparing to none in the 56 MVID and combined patients (P = .000). CONCLUSIONS: The phenotype of MYO5B deficiency was associated with MYO5B genotypes, the nullity or the domain affected.
Asunto(s)
Colestasis Intrahepática/genética , Mucolipidosis , Cadenas Pesadas de Miosina , Miosina Tipo V , Estudios de Asociación Genética , Humanos , Hígado/patología , Mucolipidosis/genética , Mucolipidosis/patología , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genéticaRESUMEN
BACKGROUND: Many patients with neurological disorders experience chronic fatigue, but the neural mechanisms involved are unclear. OBJECTIVE: Here we investigated whether the brain structural and functional connectivity alterations were involved in fatigue related to neuromyelitis optica spectrum disorder (NMOSD). METHODS: This prospective pilot study used structural and resting-state functional brain magnetic resonance imaging to compare total cortical thickness, cortical surface area, deep gray matter volume and functional connectivity (FC) between 33 patients with NMOSD and 20 healthy controls (HCs). Patients were subgrouped as low fatigue (LF) and high fatigue (HF). RESULTS: HF patients scored higher on the Hamilton Anxiety Rating Scale and Hamilton Rating Scale for Depression than LF patients and HCs. The two patient subgroups and HC group did not differ significantly in cortical thickness, cortical surface area and volumes of the bilateral caudate nucleus, bilateral putamen, bilateral amygdala, bilateral hippocampus, bilateral thalamus proper or right nucleus accumbens (p > 0.05). However, after correcting for age, sex, years of education, anxiety and depression, HF patients showed larger left pallidum than HCs (0.1573 ± 0.0214 vs 0.1372 ± 0.0145, p = 0.009). Meanwhile, both LF patients (0.0377 ± 0.0052 vs 0.0417 ± 0.0052, p = 0.009) and HF patients (0.0361 ± 0.0071 vs 0.0417 ± 0.0052, p = 0.013) showed smaller left nucleus accumbens than HCs.. Compared with LF patients, HF patients showed significantly decreased FC between the left pallidum and bilateral cerebellar posterior lobes. CONCLUSIONS: This was the first evidence linking structural and functional alterations in the brain to fatigue in NMOSD, and in the future, long term follow-up was necessary.
Asunto(s)
Neuromielitis Óptica , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/diagnóstico por imagen , Neuromielitis Óptica/patología , Proyectos Piloto , Estudios ProspectivosRESUMEN
We explore the role of miR-125b in septic cardiomyopathy, focusing on miR-125b/STAT3/HMGB1 axis. CLP mouse model and LPS-stimulated primary rat cardiomyocytes (CMs) and H9C2 cell were used as in vivo and in vitro models of septic cardiomyopathy, respectively. qRT-PCR and western blot were performed to measure expression levels of miR-125b, STAT3, HMGB1, and autophagy-related proteins. MTT assay was employed to examine LPS toxicity. Dual luciferase activity assay and CHIP were performed to validate interactions of miR-125b/STAT3 and STAT3/HMGB1 promoter. Immunostaining was used to assess the level of autophagic flux. ROS level was measured by fluorescence assay. Heart functions were examined via intracoronary Doppler ultrasound. miR-125b was diminished while STAT3 and HMGB1 were elevated in the heart tissue following CLP surgery and in LPS-treated H9C2 cells. LPS treatment up-regulated ROS generation and suppressed autophagic flux. Overexpression of miR-125b mimics or knockdown of STAT3 or HMGB1 alleviated LPS-induced hindrance of autophagic flux and ROS production. miR-125b directly targeted STAT3 mRNA and STAT3 bound with HMGB1 promoter. Overexpression of miR-125b mitigated myocardial dysfunction induced by CLP in vivo. Hyperactivation of STAT3/HMGB1 caused by reduced miR-125b contributes to ROS generation and the hindrance of autophagic flux during septic cardiomyopathy, leading to myocardial dysfunction.
Asunto(s)
Autofagia , Cardiomiopatías/prevención & control , Proteína HMGB1/antagonistas & inhibidores , MicroARNs/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Sepsis/complicaciones , Animales , Apoptosis , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proliferación Celular , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de SeñalRESUMEN
INTRODUCTION: Septic cardiomyopathy is a common complication of sepsis with high morbidity and mortality, but lacks specific therapy. This study aimed to reveal the role of circTLK1 and its potential mechanisms in septic cardiomyopathy. MATERIALS AND METHODS: The in vitro and in vivo models of septic cardiomyopathy were established. Cell viability and apoptosis were detected by CCK8, TUNEL and flow cytometry, respectively. LDH, CK, SOD, MDA, ATP, 8-OHdG, NAD+/NADH ratio, ROS level, mitochondrial membrane potential and cytochrome C distribution were evaluated using commercial kits. qRT-PCR and western blotting were performed to detect RNA and protein levels. Mitochondrial DNA (mtDNA) copy number and transcription were assessed by quantitative PCR. Dual-luciferase assay, RNA immunoprecipitation and co-immunoprecipitation were performed to verify the interaction between circTLK1/PARP1 and miR-17-5p. RESULTS: CircTLK1, PARP1 and HMGB1 were up-regulated in the in vitro and in vivo models of septic cardiomyopathy. CircTLK1 inhibition restrained LPS-induced up-regulation of PARP1 and HMGB1. Moreover, circTLK1 knockdown repressed sepsis-induced mtDNA oxidative damage, mitochondrial dysfunction and consequent cardiomyocyte apoptosis by inhibiting PARP1/HMGB1 axis in vitro and in vivo. In addition, circTLK1 enhanced PARP1 expression via sponging miR-17-5p. Inhibition of miR-17-5p abolished the protective effects of circTLK1 silencing on oxidative mtDNA damage and cardiomyocyte apoptosis. CONCLUSION: CircTLK1 sponged miR-17-5p to aggravate mtDNA oxidative damage, mitochondrial dysfunction and cardiomyocyte apoptosis via activating PARP1/HMGB1 axis during sepsis, indicating that circTLK1 may be a putative therapeutic target for septic cardiomyopathy.
Asunto(s)
Cardiomiopatías/metabolismo , ADN Circular/fisiología , ADN Mitocondrial/fisiología , Proteínas Serina-Treonina Quinasas , Sepsis/metabolismo , Animales , Línea Celular , Proteína HMGB1/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Miocitos Cardíacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
Na+ -taurocholate cotransporting polypeptide deficiency (NTCPD) is a newly described disorder arising from biallelic mutations of the SLC10A1 gene. As a result of a lack of compelling evidence from case-control studies, its genotypic and phenotypic features remain open for in-depth investigation. This study aimed to explore the genotypic and clinical phenotypic characteristics of paediatric patients with NTCPD. The SLC10A1 genotypes of all NTCPD patients were confirmed by screening for the prevalent variant c.800C>T and Sanger sequencing when necessary. The clinical presentations and laboratory changes were collected, reviewed and analysed, and then qualitatively and quantitatively compared with the relevant controls. A total of 113 paediatric NTCPD patients were diagnosed while c.374dupG and c.682_683delCT were detected as two novel pathogenic mutations. Hypercholanemia was observed in 99.12% of the patients. Indirect hyperbilirubinemia in affected neonates exhibited higher positive rates in comparison to controls. Moreover, transient cholestatic jaundice, elevated liver enzymes and 25-hydroxyvitamin D (Vit D) deficiency during early infancy were more commonly observed in patients than in controls. All NTCPD patients exhibited favourable clinical outcomes as a result of symptomatic and supportive treatment. The findings enriched the SLC10A1 mutation spectrum and provided comprehensive insights into the phenotypic characteristics of NTCPD. NTCPD should be considered and SLC10A1 gene should be analysed in patients with above age-dependent clinical features. Furthermore, over investigation and intervention should be avoided in the management of NTCPD patients.
Asunto(s)
Hepatopatías , Simportadores , Estudios de Casos y Controles , Niño , Genotipo , Humanos , Recién Nacido , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genéticaRESUMEN
BACKGROUND: Streptococcus pneumoniae (S. pneumoniae) is a major cause of bacterial meningitis, septicemia and pneumonia in children. Inappropriate choice of antibiotic can have important adverse consequences for both the individual and the community. Here, we focused on penicillin/cefotaxime non-susceptibility of S. pneumoniae and evaluated appropriateness of targeted antibiotic therapy for children with IPD (invasive pneumococcal diseases) in China. METHODS: A multicenter retrospective study was conducted in 14 hospitals from 13 provinces in China. Antibiotics prescription, clinical features and resistance patterns of IPD cases from January 2012 to December 2017 were collected. Appropriateness of targeted antibiotics therapy was assessed. RESULTS: 806 IPD cases were collected. The non-susceptibility rates of S. pneumoniae to penicillin and cefotaxime were 40.9% and 20.7% respectively in 492 non-meningitis cases, whereas those were 73.2% and 43.0% respectively in 314 meningitis cases. Carbapenems were used in 21.3% of non-meningitis cases and 42.0% of meningitis cases for targeted therapy. For 390 non-meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were used in 17.9% and 8.7% of cases respectively for targeted therapy. For 179 meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were prescribed in 55.3% and 15.6% of cases respectively. Overall, inappropriate targeted therapies were identified in 361 (44.8%) of 806 IPD cases, including 232 (28.8%) cases with inappropriate use of carbapenems, 169 (21.0%) cases with inappropriate use of vancomycin and 62 (7.7%) cases with inappropriate use of linezolid. CONCLUSIONS: Antibiotic regimens for IPD definite therapy were often excessive with extensive prescription of carbapenems, vancomycin or linezolid in China. Antimicrobial stewardship programs should be implemented to improve antimicrobial use.
Asunto(s)
Antibacterianos , Infecciones Neumocócicas , Antibacterianos/uso terapéutico , Niño , China/epidemiología , Humanos , Lactante , Pruebas de Sensibilidad Microbiana , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/epidemiología , Prescripciones , Estudios RetrospectivosRESUMEN
BACKGROUND: The mortality rate due to severe sepsis is approximately 30-60%. Sepsis readily progresses to septic shock and multiple organ dysfunction, representing a significant problem in the pediatric intensive care unit (PICU). The aim of this study was to explore the value of plasma mitochondrial DNA (mtDNA) for early diagnosis and prognosis in children with sepsis. METHODS: A total of 123 children with sepsis who were hospitalized in the Hunan Children's Hospital PICU from July 2013 to December 2014 were divided into the general sepsis group (n = 70) and severe sepsis group (n = 53) based on diagnostic standards. An additional 30 children with non-sepsis infection and 30 healthy children were randomly selected as a control group. Patients' plasma was collected during admission to the PICU. A pediatric critical illness score (PCIS) was also calculated. The plasma mtDNA level was examined using real-time polymerase chain reaction technology, and other parameters including routine laboratory values; blood lactate, procalcitonin (PCT), and C-reactive protein (CRP) levels; and data on survival were collected and compared among the groups. RESULTS: The plasma mtDNA level in the sepsis group than that in the non-sepsis infection and healthy groups. The plasma mtDNA level was significantly higher in the severe sepsis than in the general sepsis group (p < 0.001). A lower PCIS was associated with a higher plasma mtDNA level (p < 0.001). A higher number of organs with dysfunction was associated with higher plasma mtDNA levels (p < 0.001). Plasma mtDNA levels were higher among patients with elevated alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine, lactate dehydrogenase, creatine kinase, myoglobin, creatine kinase MB, and troponin than in those with values within the normal range. The mtDNA level was higher among non-survivors than among survivors, and this difference was significant. mtDNA showed a prognostic prediction value similar to that of lactate, PCT, and CRP. CONCLUSIONS: Plasma mtDNA levels may be a suitable biomarker for diagnosis and prognosis in children with sepsis.
Asunto(s)
ADN Mitocondrial/sangre , Gravedad del Paciente , Sepsis/diagnóstico , Biomarcadores/sangre , Estudios de Casos y Controles , Preescolar , Femenino , Humanos , Lactante , Masculino , Pronóstico , Curva ROC , Sepsis/sangreRESUMEN
Among the various manifestations of COVID-19, the neurological implications of SARS-CoV-2 infection are of significant concern. Marchiafava-Bignami disease (MBD), a neurodegenerative disorder, exhibits a clinical spectrum ranging from mild progressive dementia in its chronic form to states of acute coma and varied mortality rates. Acute MBD primarily occurs in chronic alcoholics and malnourished individuals and is characterized by sudden loss of consciousness, seizures, confusion, and psychosis. We herein report a case of MBD presenting as acute loss of consciousness after the development of COVID-19. The patient presented with a history of fever and upper respiratory infection and was diagnosed with SARS-CoV-2 infection. He developed a neurological syndrome characterized by altered consciousness and convulsions, and brain magnetic resonance imaging revealed abnormal signals in the corpus callosum and frontoparietal lobes. Considering his alcohol intake history and the absence of other differential diagnoses, we diagnosed him with acute MBD triggered by COVID-19. After high-dose vitamin B1 and corticosteroid therapy, his clinical symptoms improved. In this case, we observed a temporal sequence between the development of COVID-19 and acute exacerbation of MBD. This case adds to the mounting evidence suggesting the potential effect of SARS-CoV-2 on the neurological system.
Asunto(s)
COVID-19 , Demencia , Enfermedad de Marchiafava-Bignami , Humanos , Masculino , Estado de Conciencia , Enfermedad de Marchiafava-Bignami/diagnóstico , Enfermedad de Marchiafava-Bignami/diagnóstico por imagen , COVID-19/complicaciones , SARS-CoV-2 , ComaRESUMEN
BACKGROUND: Neonatal Intrahepatic Cholestasis (NICCD), as the early-age stage of Citrin deficiency involving liver dysfunction, lacks efficient diagnostic markers. Procalcitonin (PCT) has been identified as a biomarker for infection as well as various organ damage. This study aimed to explore the potential of PCT as a biomarker for NICCD. METHODS: In a single-center retrospective case-control study. Serum PCT concentrations before and after treatment of 120 NICCD patients, as the study group, were compared to the same number of cholestatic hepatitis patients, as the control group. The potential value of PCT to discriminate NICCD from control disease was further explored using Receiver Operating Characteristic (ROC) curve analysis and compared to those of other inflammatory markers. RESULTS: There was a significantly higher level of PCT in NICCD patients than in the control group. PCT concentrations were only weakly correlated with neutrophil counts and CRP levels (p Ë 0.05). At a cut-off value of 0.495 ng/mL, PCT exhibited a significantly higher diagnostic value compared to other inflammatory markers for discriminating NICCD from the control, with a sensitivity of 90.8 % and specificity of 98.3 %. CONCLUSION: PCT might be used as an initial biomarker to discriminate children with NICCD from another hepatitis disease.
Asunto(s)
Biomarcadores , Colestasis Intrahepática , Citrulinemia , Polipéptido alfa Relacionado con Calcitonina , Curva ROC , Humanos , Polipéptido alfa Relacionado con Calcitonina/sangre , Biomarcadores/sangre , Estudios Retrospectivos , Masculino , Femenino , Estudios de Casos y Controles , Colestasis Intrahepática/sangre , Colestasis Intrahepática/diagnóstico , Citrulinemia/sangre , Citrulinemia/complicaciones , Citrulinemia/diagnóstico , Lactante , Recién Nacido , Sensibilidad y Especificidad , Proteína C-Reactiva/análisis , Valores de ReferenciaRESUMEN
Introduction: Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods: Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results: Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion: These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.
RESUMEN
INTRODUCTION: Anemia may contribute significantly to the onset of Parkinson's disease (PD). Current research on the association between anemia and PD risk is inconclusive, and the relationships between anemia-related blood cell indices and PD incidence require further clarification. This study aims to investigate the relationships between anemia, blood cell indicators, and PD risk using a thorough prospective cohort study. METHODS: We used data from the UK Biobank, a prospective cohort study of 502,649 participants, and ultimately, 365,982 participants were included in the analysis. Cox proportional hazards models were utilized to adjust for confounding factors, aiming to thoroughly explore the associations between anemia and blood cell indices with the risk of incident PD. The interaction between anemia and Polygenic Risk Score (PRS) for PD was also examined. Linear regression and mediation analyses assessed potential mechanisms driven by brain structures, including grey matter volume. RESULTS: During a median follow-up of 14.24 years, 2513 participants were diagnosed with PD. Anemia considerably increased PD risk (hazard ratio [HR] 1.98, 95 % confidence interval [CI]: 1.81-2.18, P < 0.001) after adjustments. Those with high PRS for anemia had an 83 % higher PD incidence compared to low PRS participants. Sensitivity analyses confirmed result robustness. Linear regression showed that anemia correlated with grey matter volumes and most white matter tracts. Furthermore, mediation analyses identified that the volume of grey matter in Thalamus mediates the relationship between anemia and PD risk. CONCLUSION: In summary, we consider there to be a substantial correlation between anemia and increased PD risk.
Asunto(s)
Anemia , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Masculino , Femenino , Persona de Mediana Edad , Anemia/genética , Anemia/patología , Anemia/epidemiología , Anciano , Estudios Prospectivos , Reino Unido/epidemiología , Adulto , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Factores de RiesgoRESUMEN
Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.
Asunto(s)
Enfermedad de Parkinson , Transcriptoma , Humanos , Estudio de Asociación del Genoma Completo , Proteoma/genética , Predisposición Genética a la Enfermedad , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Glicoproteínas de Membrana/genéticaRESUMEN
This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.
RESUMEN
OBJECTIVE: To investigate the changes in peripheral blood Th17 and CD4(+)CD25(+) regulatory T (Treg) cells and their significance among children with hand, foot and mouth disease (HFMD). METHODS: Eighty-nine children with HFMD, including 55 cases of common HFMD and 34 cases of severe HFMD, were included in the study; and 30 healthy children were selected as the control group. The percentages of Th17 and CD4(+)CD25(+) Treg cells in CD4(+) T cells in peripheral blood were determined by flow cytometry. The expression levels of interleukin (IL)-10, transforming growth factor-ß (TGF-ß), and IL-17 were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with the control group, the cases of common HFMD and severe HFMD had significantly increased levels of Th17 cells and IL-17 (P<0.05) but significantly decreased levels of CD4(+)CD25(+) Treg cells, IL-10, and TGF-ß (P<0.05). The severity of the HFMD was positively correlated with the levels of Th17 cells and IL-17 in peripheral blood but negatively correlated with the levels of CD4(+)CD25(+) Treg cells, IL-10, and TGF-ß. CONCLUSIONS: Children with HFMD have increased response of Th17 cells but decreased response of CD4(+)CD25(+) Treg cells in peripheral blood. Th17/CD4(+)CD25(+) Treg cell imbalance may play an important role in the pathogenesis of HFMD.
Asunto(s)
Enfermedad de Boca, Mano y Pie/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Niño , Preescolar , Humanos , Lactante , Interleucina-10/sangre , Interleucina-17/sangre , Factor de Crecimiento Transformador beta/sangreRESUMEN
BACKGROUND: Lacunar stroke accounts for a quarter of all strokes, but little is known about the underlying pathological mechanisms. Analysis of serum metabolites may allow better understanding of the underlying biological processes. Mendelian randomization (MR) can provide information on the causality of associations. AIMS: To identify causal relationships between serum metabolites and lacunar stroke. METHODS: We applied a two-sample MR analysis to evaluate relationships between 486 serum metabolites and lacunar stroke. The inverse-variance weighted (IVW) method was used to estimate the causal relationship of the exposure on the outcome, while sensitivity analyses were performed using MR-Egger, weighted median, and MR-PRESSO to eliminate the pleiotropy. We also performed a metabolic pathway analysis to identify potential metabolic pathways. RESULTS: We identified 15 known (8 risk and 7 protective) and 14 unknown serum metabolites associated with lacunar stroke. Among the known risk metabolites, two were lipids (1-linoleoylglycerophosphoethanolamine and dihomo-linolenate (20:3n3 or n6)), five amino acids (kynurenine, isobutyrylcarnitine, aspartate, trans-4-hydroxyproline, and 3-methyl-2-oxovalerate), and one peptide (ADSGEGDFXAEGGGVR). The known protective metabolites included four lipids (4-androsten-3beta,17beta-diol disulfate 1, 1-palmitoleoylglycerophosphocholine, adrenate (22:4n6), and glycodeoxycholate), one amino acid (methionine), and two exogenous metabolites (homostachydrine and 2-methoxyacetaminophen sulfate). Metabolic pathway analysis identified several pathways that might be involved in the disease. CONCLUSION: We identified eight risk and seven protective human serum metabolites associated with lacunar stroke. Isobutyrylcarnitine was positively associated with an increased risk of lacunar stroke. In addition, 3-methyl-2-oxovalerate and aspartate may be involved in the disease pathogenesis through metabolic pathways.
Asunto(s)
Accidente Vascular Cerebral Lacunar , Accidente Cerebrovascular , Humanos , Ácido Aspártico , Análisis de la Aleatorización Mendeliana , Accidente Vascular Cerebral Lacunar/genética , Accidente Cerebrovascular/genética , Lípidos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVE: To study the effects of astragaloside on the expression of insulin-like growth factor-1 (IGF-1) and associated proteins in mice with viral myocarditis. METHODS: Sixty-five 4-week-old BALB/C mice were randomly divided into 5 groups: normal control, astragaloside control, untreated myocarditis, low-dose and high-dose astragaloside-treated myocarditis. The BALB/C mice in the later three groups were intraperitoneally injected with CVB3. The low-dose and high-dose astragaloside-treated myocarditis groups were given astragaloside of 0.07 and 0.6 mg/kgâ¢d, respectively by intragastric administration. Fifteen days later, the samples of blood and muscular tissues were obtained. The expression of IGF-1 in plasma was measured using ELISA. The levels of IGF-1 and associated proteins in muscular tissues were measured by immunohistochemistry. The expression of IGF-1 mRNA in muscular tissues was examined by RT-polymerase chain reaction (RT-PCR). RESULTS: The expression of IGF-1 and associated proteins increased significantly in mice infected with CVB3. High-dose astragaloside treatment reduced the expression of IGF-1 and associated proteins, but low-dose astragaloside did not. CONCLUSIONS: High-dose astragaloside may reduce the expression of IGF-1 and associated proteins in mice with acute viral myocarditis, possibly thus providing protective effects on muscular tissues.
Asunto(s)
Infecciones por Coxsackievirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Enterovirus Humano B , Factor I del Crecimiento Similar a la Insulina/análisis , Miocarditis/tratamiento farmacológico , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Enfermedad Aguda , Animales , Infecciones por Coxsackievirus/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Miocarditis/metabolismo , Miocardio/química , ARN Mensajero/análisis , Receptor IGF Tipo 1/análisisRESUMEN
Bacterial and viral infection is a common cause of pneumonia, respiratory failure, and even acute respiratory distress syndrome. Increasing evidence indicates that red blood cells (RBCs) may contribute to immune response and inflammation. However, the precise molecular mechanisms that link RBC and hemolysis to the development and progression of inflammatory pathologies are not entirely understood. In this study, we used bacterial endotoxin, lipopolysaccharide (LPS), to mimic an infectious hemolysis and found that RBCs dynamically regulated cell aggregation between immune cells and human lung microvascular endothelial cells (HLMVEC). When RBCs were treated with LPS, integrin α4ß1 was increased and was accompanied by cytokines and chemokines release (TNF-α, IL-1ß, IL-6, IL-8, IFN-γ, CXCL12, CCL5, CCL7 and CCL4). Upon α4ß1 elevation, RBCs not only facilitated mature monocyte derived dendritic cell (mo-DCs) adhesion but also promoted HLMVEC aggregation. Furthermore, co-culture of the supernatant of LPS pre-treated RBCs with mo-DCs could promote naïve CD4 T cell proliferation. Notably, the filtered culture from LPS-lysed RBCs further promoted mo-DCs migration in a concentration dependent manner. From a therapeutic perspective, cyclic peptide inhibitor of integrin α4ß1 combined with methylprednisolone (α4ß1/Methrol) remarkably blocked RBCs aggregation to mo-DCs, HLMVEC, or mo-DCs and HLMVEC mixture. Moreover, α4ß1/Methrol dramatically reduced mo-DCs migration up-regulated glucocorticoid-induced leucine zipper in mo-DCs, and ultimately reversed immune cell dysfunction induced by hemolysis. Taken together, these results indicate that integrin α4ß1 on RBCs could mediate cell-cell interaction for adaptive immunity through influencing cell adhesion, migration, and T cell proliferation.