Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nat Prod ; 87(2): 365-370, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38276888

RESUMEN

Violaceotides B-E (1-4), four new cyclic tetrapeptides, along with seven known compounds, were identified from the sponge-associated Aspergillus insulicola IMB18-072 co-cultivated with the marine-derived Alternaria angustiovoidea IMB20-805. Their structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and MS/MS data. The absolute configurations were determined by the advanced Marfey's method. Compounds 2, 3, and violaceotide A (5) displayed selective antimicrobial activities against the aquatic pathogenic bacteria Edwardsiella tarda and E. ictaluri. In addition, compounds 1-5 showed inhibitory activities against the LPS-induced expression of the inflammatory mediator IL-6 in RAW264.7 cells at a concentration of 10 µM.


Asunto(s)
Antiinfecciosos , Espectrometría de Masas en Tándem , Técnicas de Cocultivo , Espectroscopía de Resonancia Magnética , Antiinflamatorios/farmacología , Estructura Molecular , Hongos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química
2.
Bioorg Chem ; 147: 107364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636434

RESUMEN

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Asunto(s)
Resorción Ósea , Osteogénesis , Ovariectomía , PPAR delta , Transducción de Señal , Animales , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Resorción Ósea/metabolismo , Ratas , PPAR delta/metabolismo , Femenino , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Células RAW 264.7 , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Relación Dosis-Respuesta a Droga , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Ratas Sprague-Dawley , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Diferenciación Celular/efectos de los fármacos
3.
Acta Pharmacol Sin ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811775

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

4.
Curr Issues Mol Biol ; 45(6): 5052-5070, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37367070

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Silencing information regulator 1 (SIRT1) was demonstrated to modulate cholesterol and lipid metabolism in NAFLD. Here, a novel SIRT1 activator, E1231, was studied for its potential improvement effects on NAFLD. C57BL/6J mice were fed a high-fat and high-cholesterol diet (HFHC) for 40 weeks to create a NAFLD mouse model, and E1231 was administered by oral gavage (50 mg/kg body weight, once/day) for 4 weeks. Liver-related plasma biochemistry parameter tests, Oil Red O staining, and hematoxylin-eosin staining results showed that E1231 treatment ameliorated plasma dyslipidemia, plasma marker levels of liver damage (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), liver total cholesterol (TC) and triglycerides (TG) contents, and obviously decreased hepatic steatosis score and NAFLD Activity Score (NAS) in the NAFLD mouse model. Western blot results showed that E1231 treatment significantly regulated lipid-metabolism-related protein expression. In particular, E1231 treatment increased SIRT1, PGC-1α, and p-AMPKα protein expression but decreased ACC and SCD-1 protein expression. Additionally, in vitro studies demonstrated that E1231 inhibited lipid accumulation and improved mitochondrial function in free-fatty-acid-challenged hepatocytes, and required SIRT1 activation. In conclusion, this study illustrated that the SIRT1 activator E1231 alleviated HFHC-induced NAFLD development and improved liver injury by regulating the SIRT1-AMPKα pathway, and might be a promising candidate compound for NAFLD treatment.

5.
Respir Res ; 24(1): 306, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057804

RESUMEN

BACKGROUND: Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS: Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS: Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Lesión Pulmonar , Humanos , Animales , Ratones , Lesión Pulmonar/inducido químicamente , Lisosomas , Óxido de Aluminio , Dióxido de Silicio
6.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362263

RESUMEN

Krüppel-like factor 2 (KLF2) is an atherosclerotic protective transcription factor that maintains endothelial cell homeostasis through its anti-inflammatory, anti-oxidant, and antithrombotic properties. The aim of this study was to discover KLF2 activators from microbial secondary metabolites and explore their potential molecular mechanisms. By using a high-throughput screening model based on a KLF2 promoter luciferase reporter assay, column chromatography, electrospray ionization mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectra, trichostatin D (TSD) was isolated from the rice fermentation of Streptomyces sp. CPCC203909 and identified as a novel KLF2 activator. Real-time-quantitative polymerase chain reaction (RT-qPCR) results showed that TSD upregulated the mRNA level of KLF2 in endothelial cells. Functional assays showed that TSD attenuated monocyte adhesion to endothelial cells, decreased vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, and exhibited an anti-inflammatory effect in tumor necrosis factor alpha (TNFα)-induced endothelial cells. We further demonstrated through siRNA and western blot assays that the effects of TSD on monocyte adhesion and inflammation in endothelial cells were partly dependent on upregulating KLF2 expression and then inhibiting the NOD-like receptor protein 3 (NLRP3)/Caspase-1/interleukin-1beta (IL-1ß) signaling pathway. Furthermore, histone deacetylase (HDAC) overexpression and molecular docking analysis results showed that TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 activities. Taken together, TSD was isolated from the fermentation of Streptomyces sp. CPCC203909 and first reported as a potential activator of KLF2 in this study. Furthermore, TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 and attenuated endothelial inflammation via regulation of the KLF2/NLRP3/Caspase-1/IL-1ß signaling pathway.


Asunto(s)
Células Endoteliales , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Caspasas/metabolismo
7.
Bioorg Chem ; 116: 105361, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562672

RESUMEN

The OPG/RANKL/RANK pathway is a promising target for the design of therapeutic agents used in the treatment of osteoporosis. E09241 with an N-methylpyridine-chlorofuranformamide structural skeleton was previously identified to decrease bone loss and thus protect against osteoporosis in ovariectomized rats through increasing osteoprotegerin (OPG) expression. In this study, 36 derivatives of E09241 (3a) were prepared. The synthesis, up-regulation of OPG activities, SAR (structure-activity relationship), and cytotoxicity of these compounds are presented. Compounds with good up-regulating OPG activities could inhibit RANKL (the receptor activator of nuclear factor-kappa B ligand)-induced osteoclastogenesis in RAW264.7 cells. Particularly, compounds 3c and 3i1 significantly reduced NFATc1 and MMP-9 protein expression through inhibition of the NF-κB and MAPK pathways in RANKL induced RAW264.7 cells. In addition, compounds 3c and 3v significantly promoted osteoblast differentiation in MC3T3-E1 cells in osteogenic medium, and compounds 3c, 3v, and 3i1 obviously increased OPG protein expression and secretion in MC3T3-E1 cells. Furthermore, the pharmacokinetic profiles, acute toxicity, and hERG K+ channel effects of compounds 3a, 3c, 3e, 3v, and 3i1 were investigated. Taken together, these results indicate that N-methylpyridine-chlorofuranformamide analog 3i1 could serve as a promising lead for the development of new agents for treating osteoporosis.


Asunto(s)
Formamidas/farmacología , Furanos/farmacología , Osteoprotegerina/metabolismo , Piridinas/farmacología , Ligando RANK/antagonistas & inhibidores , Células 3T3 , Animales , Relación Dosis-Respuesta a Droga , Formamidas/química , Furanos/química , Ratones , Estructura Molecular , Osteogénesis/efectos de los fármacos , Piridinas/química , Ligando RANK/metabolismo , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
J Immunol ; 197(3): 824-33, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27354218

RESUMEN

The H5N1 avian influenza virus causes severe disease and high mortality, making it a major public health concern worldwide. The virus uses the host cellular machinery for several steps of its life cycle. In this report, we observed overexpression of the ubiquitin-like protein FAT10 following live H5N1 virus infection in BALB/c mice and in the human respiratory epithelial cell lines A549 and BEAS-2B. Further experiments demonstrated that FAT10 increased H5N1 virus replication and decreased the viability of infected cells. Total RNA extracted from H5N1 virus-infected cells, but not other H5N1 viral components, upregulated FAT10, and this process was mediated by the retinoic acid-induced protein I-NF-κB signaling pathway. FAT10 knockdown in A549 cells upregulated type I IFN mRNA expression and enhanced STAT1 phosphorylation during live H5N1 virus infection. Taken together, our data suggest that FAT10 was upregulated via retinoic acid-induced protein I and NF-κB during H5N1 avian influenza virus infection. And the upregulated FAT10 promoted H5N1 viral replication by inhibiting type I IFN.


Asunto(s)
Interferón Tipo I/biosíntesis , Infecciones por Orthomyxoviridae/metabolismo , Ubiquitinas/metabolismo , Replicación Viral/fisiología , Animales , Western Blotting , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Subtipo H5N1 del Virus de la Influenza A , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones por Orthomyxoviridae/inmunología , Reacción en Cadena de la Polimerasa , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Regulación hacia Arriba
9.
Biomed Pharmacother ; 172: 116220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308968

RESUMEN

OBJECTIVE: Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS: We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved ß-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS: Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Hiperglucemia , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , PPAR gamma/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Dislipidemias/tratamiento farmacológico , Hígado/metabolismo , Hiperglucemia/tratamiento farmacológico , Colesterol/metabolismo , Tejido Adiposo Blanco/metabolismo
10.
Front Pharmacol ; 11: 532568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33442380

RESUMEN

Phenethyl isothiocyanate is widely present in cruciferous vegetables with multiple biological effects. Here we reported the antiatherogenic effects and the underlying mechanisms of JC-5411 (Phenethyl isothiocyanate formulation) in vitro and in vivo. Luciferase reporter assay showed that JC-5411 increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). JC-5411 treatment significantly increased the protein expression of Nrf2 and its downstream target gene hemeoxygenase 1 (HO-1) in liver of apolipoprotein E deficient (ApoE-/-) mice. Importantly, JC-5411 treatment significantly reduced atherosclerotic plaque area in both en face aorta and aortic sinus when compared with model group in WD induced ApoE-/- mice. JC-5411 obviously decreased proinflammatory factors' levels in serum of ApoE-/- mice, LPS stimulated macrophages and TNFα induced endothelial cells, respectively. JC-5411 significantly decreased the levels of total cholesterol (TC) and triglyceride (TG) in both serum and liver of ApoE-/- mice and hyperlipidemic golden hamsters. Mechanism studies showed that JC-5411 exerted anti-inflammatory effect through activating Nrf2 signaling and inhibiting NF-κB and NLRP3 inflammasome pathway. JC-5411 exerted regulating lipid metabolism effect through increasing cholesterol transfer proteins (ABCA1 and LDLR) expression, regulating fatty acids synthesis related genes (p-ACC, SCD1 and FAS), and increasing fatty acids ß-oxidation (CPT1A) in vivo. Furthermore, JC-5411 treatment had a favorable antioxidant effect in ApoE-/- mice by increasing the antioxidant related genes expression. Taken together, we conclude that JC-5411 as a Nrf2 activator has anti-inflammatory, rebalancing lipid metabolism, and antioxidant effects, which makes it as a potential therapeutic agent against atherosclerosis.

11.
Natl Sci Rev ; 7(6): 1003-1011, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34676126

RESUMEN

A recent outbreak of pneumonia in Wuhan, China was found to be caused by a 2019 novel coronavirus (2019-nCoV or SARS-CoV-2 or HCoV-19). We previously reported the clinical features of 12 patients with 2019-nCoV infections in Shenzhen, China. To further understand the pathogenesis of COVID-19 and find better ways to monitor and treat the disease caused by 2019-nCoV, we measured the levels of 48 cytokines in the blood plasma of those 12 COVID-19 patients. Thirty-eight out of the 48 measured cytokines in the plasma of 2019-nCoV-infected patients were significantly elevated compared to healthy individuals. Seventeen cytokines were linked to 2019-nCoV loads. Fifteen cytokines, namely M-CSF, IL-10, IFN-α2, IL-17, IL-4, IP-10, IL-7, IL-1ra, G-CSF, IL-12, IFN-γ, IL-1α, IL-2, HGF and PDGF-BB, were strongly associated with the lung-injury Murray score and could be used to predict the disease severity of 2019-nCoV infections by calculating the area under the curve of the receiver-operating characteristics. Our results suggest that 2019-nCoV infections trigger extensive changes in a wide array of cytokines, some of which could be potential biomarkers of disease severity of 2019-nCoV infections. These findings will likely improve our understanding of the immunopathologic mechanisms of this emerging disease. Our results also suggest that modulators of cytokine responses may play a therapeutic role in combating the disease once the functions of these elevated cytokines have been characterized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA