Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(15): 2810-2828.e6, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541219

RESUMEN

DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Daño del ADN , Humanos , Citometría de Flujo , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética
2.
Genes Dev ; 36(17-18): 1016-1030, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302555

RESUMEN

Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.


Asunto(s)
Proteómica , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteoma , Ubiquitina/metabolismo , Ubiquitinación
3.
Proc Natl Acad Sci U S A ; 119(25): e2121779119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704761

RESUMEN

Cell surface proteins play essential roles in various biological processes and are highly related to cancer development. They also serve as important markers for cell identity and targets for pharmacological intervention. Despite their great potentials in biomedical research, comprehensive functional analysis of cell surface proteins remains scarce. Here, with a de novo designed library targeting cell surface proteins, we performed in vivo CRISPR screens to evaluate the effects of cell surface proteins on tumor survival and proliferation. We found that Kirrel1 loss markedly promoted tumor growth in vivo. Moreover, KIRREL was significantly enriched in a separate CRISPR screen based on a specific Hippo pathway reporter. Further studies revealed that KIRREL binds directly to SAV1 to activate the Hippo tumor suppressor pathway. Together, our integrated screens reveal a cell surface tumor suppressor involved in the Hippo pathway and highlight the potential of these approaches in biomedical research.


Asunto(s)
Genes Supresores de Tumor , Vía de Señalización Hippo , Proteínas de la Membrana , Neoplasias , Animales , Proliferación Celular/genética , Vía de Señalización Hippo/genética , Proteínas de la Membrana/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
4.
Rheumatology (Oxford) ; 63(3): 891-900, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382568

RESUMEN

OBJECTIVE: This study investigates the positivity and relevance of non-criteria aPLs with clinical phenotypes in patients highly suspected of or diagnosed with APS. METHODS: Outpatient cases were included from a prospectively maintained database, and patients were grouped into APS (n = 168), seronegative APS (SNAPS, n = 9), those meeting the diagnostic criteria for clinical events without laboratory results (only-event, n = 15), those that had aPL positivity without clinical manifestations (asymptomatic APA, n = 39), and healthy controls (n = 88). Criteria aPL results and APS-related clinical features were extracted. Sixteen non-criteria aPLs were tested and analysed. RESULTS: LA, aCL and anti-ß2 glycoprotein-I were positive in 84.5%, 61.3% and 74.4% of APS patients, and 61.5%, 59.0% and 74.4% of asymptomatic APA patients, respectively. In patients negative for criteria serological tests, 23 out of 24 were positive for at least one non-criteria aPL. Triple-positive patients also had significantly higher tests of some aPLs in comparison with other groups. Stroke was associated with anti-phosphatidyl-inositol (aPI) IgG and anti-phosphatidyl-glycerol (aPG) IgG. Late embryonic loss correlated with aPI IgM, and premature birth/eclampsia was associated with aPI IgG and aPG IgG. There were also positive associations between heart valve lesions and anti-phosphatidylserine-prothrombin (aPS/PT) IgM, APS nephropathy and anti-phosphatidyl-choline IgG or aPS/PT IgG, and livedo reticularis and anti-phosphatidyl-ethanolamine IgM. CONCLUSION: The prevalence of non-criteria aPLs differed from diagnostic biomarkers in patients diagnosed with or suspected of APS. Detection of aPLs provided additive value in the evaluation of APS-related clinical manifestations.


Asunto(s)
Anticuerpos Antifosfolípidos , Síndrome Antifosfolípido , Femenino , Embarazo , Humanos , Síndrome Antifosfolípido/complicaciones , Relevancia Clínica , Protrombina , Inmunoglobulina G , Inmunoglobulina M
5.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720518

RESUMEN

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Asunto(s)
Síndrome Antifosfolípido , Inmunoglobulina G , Humanos , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/sangre , Síndrome Antifosfolípido/diagnóstico , Glicosilación , Femenino , Masculino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Adulto , Persona de Mediana Edad , Embarazo , Lectinas/sangre , Lectinas/metabolismo , Lectinas/inmunología , Biomarcadores/sangre , Análisis por Matrices de Proteínas/métodos , Anticuerpos Antifosfolípidos/sangre , Anticuerpos Antifosfolípidos/inmunología , Lectinas de Plantas/metabolismo , Lectinas de Plantas/inmunología , Anciano , Glicoproteínas
6.
Cell Commun Signal ; 22(1): 318, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858740

RESUMEN

OBJECTIVES: Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS: We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/ß-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS: We observed that ectopic milieu, characterized by ROS, TGF-ß1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/ß-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or ß-catenin with siRNA, and ß-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/ß-catenin signaling. CONCLUSION: Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/ß-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.


Asunto(s)
Endometriosis , Transición Epitelial-Mesenquimal , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , beta Catenina , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Interleucina-33/metabolismo , Interleucina-33/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , beta Catenina/metabolismo , Animales , Fosforilación , Ratones , Endometrio/patología , Endometrio/metabolismo , Adulto , Proliferación Celular , Movimiento Celular , Transducción de Señal
7.
J Endovasc Ther ; : 15266028241229014, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339974

RESUMEN

PURPOSE: Renal artery aneurysm (RAA) is a rare disease. This study proposed and evaluated a new classification for RAA to assist in surgical decision-making. MATERIALS AND METHODS: Single-center data of 105 patients with RAAs from the vascular department of vascular surgery were collected retrospectively. A new classification scheme was proposed. Type I aneurysms arise from the main trunk, accessory branch, or first-order branches away from any bifurcation. Type II aneurysms arise from the first bifurcation with narrow necks (defined as dome-to-neck ratio >2) or from intralobular branches. Type III aneurysms with a wide neck arise from the first bifurcation and affect 2 or more branches that cannot be sacrificed without significant infarction of the kidney. RESULTS: There was 50 (47.62%) type I, 33 (31.43%) type II, and 22 (20.95%) type III aneurysms. The classification assigned endovascular repair as first-line treatment (for type I or II), while open techniques were conducted if anatomically suitable (for type III). A kappa level of 0.752 was achieved by the classification compared with a level of 0.579 from the classic Rundback classification. Technical primary success was achieved in 100% and 96.05%, and symptoms were completely resolved in 100% and 84.85%, while hypertension was relieved in 84.21% and 72.92% of patients receiving open surgery or endovascular repair, respectively. No significant difference was observed for perioperative or long-term complications among the 3 classification types. CONCLUSION: The new classification proved to be a convenient and effective method for facilitating choice of intervention for RAAs. CLINICAL IMPACT: This study proposed and evaluated a new classification scheme for renal artery aneurysms, which proved to be a convenient and effective method for facilitating surgical decision-making. Coil embolization was the first-line treatment if suitable, while aneurysm resection and reconstruction with vein graft were conducted for some complex lesions. The safety and efficacy of both open and endovascular methods were validated.

8.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255903

RESUMEN

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metapneumovirus , Humanos , Animales , Gatos , Porcinos , Metapneumovirus/genética , Integrina beta1/genética , Pollos , Anticuerpos Antivirales
9.
J Biol Chem ; 298(6): 101979, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35472331

RESUMEN

Replication timing regulatory factor 1 (RIF1) acts downstream of p53-binding protein 53BP1 to inhibit the resection of DNA broken ends, which plays critical roles in determining the DNA double-strand break repair pathway choice between nonhomologous end joining and homologous recombination (HR). However, the mechanism by which this choice is made is not yet clear. In this study, we identified that histone chaperone protein ASF1 associates with RIF1 and regulates RIF1-dependent functions in the DNA damage response. Similar to loss of RIF1, we found that loss of ASF1 resulted in resistance to poly (ADP-ribose) polymerase (PARP) inhibition in BRCA1-deficient cells with restored HR and decreased telomere fusion in telomeric repeat-binding protein 2 (TRF2)-depleted cells. Moreover, we showed that these functions of ASF1 are dependent on its interaction with RIF1 but not on its histone chaperone activity. Thus, our study supports a new role for ASF1 in dictating double-strand break repair choice. Considering that the status of 53BP1-RIF1 axis is important in determining the outcome of PARP inhibitor-based therapy in BRCA1- or HR-deficient cancers, the identification of ASF1 function in this critical pathway uncovers an interesting connection between these S-phase events, which may reveal new strategies to overcome PARP inhibitor resistance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
10.
PLoS Pathog ; 17(3): e1009347, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33647067

RESUMEN

In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.


Asunto(s)
Calor/efectos adversos , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Reoviridae/inmunología , Animales , Degradación Asociada con el Retículo Endoplásmico/inmunología , Insectos Vectores/inmunología , Orthoreovirus/patogenicidad
11.
BMC Cancer ; 23(1): 573, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349676

RESUMEN

BACKGROUND: The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS: GEPIA, cBioPortal, and Kaplan-Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS: The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION: We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario , Biología Computacional , Neoplasias Ováricas/patología , Pronóstico , ARN Mensajero/genética
12.
J Endovasc Ther ; : 15266028221149918, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647195

RESUMEN

PURPOSE: This study aimed to investigate the demographic and anatomic characteristics, as well as perioperative and follow-up results of fenestration and parallel techniques for the endovascular repair of complex aortic diseases. MATERIALS AND METHODS: A retrospective study was conducted on 67 consecutive patients underwent endovascular treatment for complex aortic diseases including abdominal aortic aneurysm (AAA), thoracoabdominal aneurysm (TAAA), aortic dissection, or prior endovascular repair with either fenestrated and parallel endovascular aortic repair (f-EVAR or ch-EVAR) at a single institute from 2013 to 2021. Choices of intervention were made by the disease' emergency, patients' general condition, the anatomic characteristics, as well as following the recommendation from the devices' guidelines. Patients' clinical demographics, aortic disease characteristics, perioperative details, and disease courses were discussed. Short- and mid-term follow-up results were obtained and analyzed. Endpoints were aneurysm-related and unrelated mortality, branch instability, and renal function deterioration. RESULTS: Totally, 34 and 27 patients received f-EVAR and ch-EVAR, while 6 patients received a combination of both. Fenestrated endovascular aortic repair was conducted mainly in AAA affecting visceral branches and TAAA, whereas ch-EVAR was normally utilized for infrarenal AAA. Regarding the average number of reconstructed arteries per patient, there was a significant difference among f-EVAR, ch-EVAR, and the combination group (mean = 2.3 ± 0.9, 1.4 ± 0.6, 3.5 ± 0.5, p<0.001). Primary technical success was achieved in 28 (82.4%), 22 (81.5%), and 3 (50.0%) patients for each group. Besides operational time (5.77 ± 2.58, 4.47 ± 1.44, p=0.033), no significant difference was observed for blood transfusion, intensive care unit (ICU) or hospital stay, blood creatinine level, 30-day complications, or follow-up complications between patients undergoing f-EVAR or ch-EVAR. Patients receiving combination of both techniques had a higher rate of blood transfusion (p=0.044), longer operational time (p=0.008) or hospital stay (p=0.017), as well as more stent occlusion (p=0.001), endoleak (p=0.004) at short-term and a higher rate of endoleak (p=0.023) at mid-term follow-up. CONCLUSION: In conclusion, this study demonstrated that f-EVAR and ch-EVAR techniques had acceptable perioperative and follow-up results and should be considered viable alternatives when encountering complex aortic diseases. CLINICAL IMPACT: This study sought to investigate the baseline and pathological characteristics, as well as perioperative and follow-up results of f-EVAR and ch-EVAR at a single Chinese institution. F-EVAR (mostly physician-modified f-EVAR) was applied in patients with a wide range of etiologies and disease types, while ch-EVAR was preferred for AAA in older patients with an average higher ASA grade. Our experience suggested acceptable safety and efficacy both for techniques, and no significant difference was observed between the two groups regarding any short or mid-term adverse events.

13.
Clin Exp Rheumatol ; 41(2): 230-237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36226625

RESUMEN

OBJECTIVES: Dermatomyositis (DM) is an idiopathic inflammatory myopathy characterised by the presence of a variety of myositis-specific autoantibodies (MSA) in the circulation. As one of the commonly-detected MSA, anti-transcription intermediary factor 1 gamma (TIF1γ) autoantibody is strongly associated with DM-related malignancy and disease activity. We investigated the glycosylation patterns of serum IgG and to determine the clinical significance of specific glycosylation patterns in patients with anti-TIF1γ positive DM. METHODS: Lectin microarray was used to reveal the glycosylation patterns of serum IgG among 52 DM, 46 disease controls (DC) and 49 healthy controls (HC). Lectin blot was used to further validate the specific alteration of glycosylation. The correlation between glycan levels and clinical features was also evaluated. RESULTS: The results of lectin microarray showed that compared with the DC group, the DM group had significantly lower glycan levels of mannose and glucose. Compared with the HC group, the glycans levels of GalNAc, galactose, Galß3GalNAc, sialic acid, and fucose were observed significantly higher in DM group. Lectin blot demonstrated that anti-TIF1γ positive DM had lower glycan level of GlcNAc (recognized by LEL) compared to patients with MSA negative DM, DC, and HC groups. Additionally, the glycan level of GlcNAc was positively associated with manual muscle test (r=0.547, p=0.028), or negatively associated with IL-6 level (r=-0.756, p=0.049) and disease activity score (r=-0.507, p=0.045). CONCLUSIONS: Anti-TIF1γ positive DM presents a unique glycosylation pattern in serum IgG. Considering that the glycan level of GlcNAc reflects the inflammatory state and disease activity, glycosylation has a role in clinical utility by monitoring disease in patients with anti-TIF1γ positive DM.


Asunto(s)
Dermatomiositis , Miositis , Humanos , Dermatomiositis/complicaciones , Glicosilación , Análisis de Mediación , Miositis/complicaciones , Autoanticuerpos , Inmunoglobulina G
14.
Nucleic Acids Res ; 49(14): 8214-8231, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34320214

RESUMEN

Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells' response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN/genética , Proteína Quinasa Activada por ADN/genética , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Sistemas CRISPR-Cas/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inestabilidad Genómica/genética , Humanos , Proteínas de Microfilamentos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
15.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047518

RESUMEN

Etoposide (ETO) is an anticancer drug that targets topoisomerase II (TOP2). It stabilizes a normally transient TOP2-DNA covalent complex (TOP2cc), thus leading to DNA double-strand breaks (DSBs). Tyrosyl-DNA phosphodiesterases two (TDP2) is directly involved in the repair of TOP2cc by removing phosphotyrosyl peptides from 5'-termini of DSBs. Recent studies suggest that additional factors are required for TOP2cc repair, which include the proteasome and the zinc finger protein associated with TDP2 and TOP2, named ZATT. ZATT may alter the conformation of TOP2cc in a way that renders the accessibility of TDP2 for TOP2cc removal. In this study, our genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens revealed that ZATT also has a TDP2-independent role in promoting cell survival following ETO treatment. ZATT KO cells showed relatively higher ETO sensitivity than TDP2-KO cells, and ZATT/TDP2 DKO cells displayed additive hypersensitivity to ETO treatment. The study using a series of deletion mutants of ZATT determined that the N-terminal 1-168 residues of ZATT are required for interaction with TOP2 and this interaction is critical to ETO sensitivity. Moreover, depletion of ZATT resulted in accelerated TOP2 degradation after ETO or cycloheximide (CHX) treatment, suggesting that ZATT may increase TOP2 stability and likely participate in TOP2 turnover. Taken together, this study suggests that ZATT is a critical determinant that dictates responses to ETO treatment and targeting. ZATT is a promising strategy to increase ETO efficacy for cancer therapy.


Asunto(s)
Proteínas de Unión al ADN , Venenos , Etopósido/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ADN/metabolismo
16.
BMC Bioinformatics ; 23(1): 525, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474154

RESUMEN

Accurate estimate of relatedness is important for genetic data analyses, such as heritability estimation and association mapping based on data collected from genome-wide association studies. Inaccurate relatedness estimates may lead to biased heritability estimations and spurious associations. Individual-level genotype data are often used to estimate kinship coefficient between individuals. The commonly used sample correlation-based genomic relationship matrix (scGRM) method estimates kinship coefficient by calculating the average sample correlation coefficient among all single nucleotide polymorphisms (SNPs), where the observed allele frequencies are used to calculate both the expectations and variances of genotypes. Although this method is widely used, a substantial proportion of estimated kinship coefficients are negative, which are difficult to interpret. In this paper, through mathematical derivation, we show that there indeed exists bias in the estimated kinship coefficient using the scGRM method when the observed allele frequencies are regarded as true frequencies. This leads to negative bias for the average estimate of kinship among all individuals, which explains the estimated negative kinship coefficients. Based on this observation, we propose an unbiased estimation method, UKin, which can reduce kinship estimation bias. We justify our improved method with rigorous mathematical proof. We have conducted simulations as well as two real data analyses to compare UKin with scGRM and three other kinship estimating methods: rGRM, tsGRM, and KING. Our results demonstrate that both bias and root mean square error in kinship coefficient estimation could be reduced by using UKin. We further investigated the performance of UKin, KING, and three GRM-based methods in calculating the SNP-based heritability, and show that UKin can improve estimation accuracy for heritability regardless of the scale of SNP panel.


Asunto(s)
Análisis de Datos , Estudio de Asociación del Genoma Completo , Humanos , Genómica
17.
J Cell Biochem ; 123(7): 1237-1246, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656936

RESUMEN

Antimicrobial peptides (AMP) from Brevibacillus laterosporus have good prospects as clinical treatments for cancer. Nevertheless, details about their anticancer spectrum and mode of cytotoxicity remain poorly understood. A newly found AMP (named Brevilaterin C) secreted by B. laterosporus S62-9 exhibited strong inhibition on almost cancer cell lines examined at a concentration of 8 µg/ml but was relatively safe for normal cells. We further systematically examined its cytotoxicity and mechanism toward human epidermal cancer cell A431. A dosage of 3 µg/ml of Brevilaterin C could significantly increase lactate dehydrogenase release of tumor cells. Moreover, it could remarkably increase the ratio of apoptosis and reactive oxygen species generation of A431, indicating effective induction of apoptosis. Moreover, the formation of JC-1 aggregates was effectively prevented by a low concentration of Brevilaterin C, indicating its effective induction of A431's apoptosis. Brevilaterin C exhibited broad-spectrum cytotoxicity to cancer cells, indicating a good potential prospect in the medical field.


Asunto(s)
Brevibacillus , Neoplasias , Humanos , Brevibacillus/metabolismo
18.
Microb Cell Fact ; 21(1): 196, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123650

RESUMEN

BACKGROUND: Brevilaterin A-E, a novel class of multi-component cationic antimicrobial lipopeptides, were biosynthesized by a non-ribosomal peptides synthetase (NRPS) in Brevibacillus laterosporus. However, the antimicrobial abilities of different brevilaterin components varied greatly, and this multi-component form was impeding the scale production of the excellent component, and a little information about the brevilaterin biosynthesis mechanism was available to apply in brevilaterin design modification. In this study, we used an accurate strategy that revealed the reason for producing multi-component was the substrate selectivity of bre2691A protein being not enough specific and pinpointed the key design sites to make the specificity of bre2691A enhanced. RESULTS: Bioinformatic analysis revealed that the biocatalytic site of bre2691A, which was an adenylation domain catalyzed and recognized methionine, leucine, valine and isoleucine and thus introduced them into brevilaterins and caused different components (brevilaterin A-E), was consisted of A1 ~ A10 residues named specificity-conferring code. Coupling molecular docking simulations with mutation studies identified A2 and A7 as critical residues, where determined substrate-specificity and impacted activity. The in virto activity assay showed that the A2 mutant (G193A) would lose activity against methionine and have no effect on the other three amino acids, the A7 mutant (G285C) would enhance the catalytic activity against four substrates, especially against leucine at almost a double activity. When the A2 and A7 residues were synchronously mutated, this mutant would be more focused on recognizing leucine. CONCLUSIONS: An accurate strategy that combined with bioinformatics and site-directed mutation techniques revealed the pivotal site A2 and A7 positions of bre2691A protein that could be used to design and modify brevilaterins, thus further providing a reasonable direction of genetic engineering for Brevibacillus laterosporus. A deeper understanding of the function of crucial residues in the adenylation domain would make it get more accurate and highly efficient design and more fully utilized. Furthermore, it would contribute to biotechnological applications, namely for the large centralized synthesis of antimicrobial peptides, or for the optimization of their production.


Asunto(s)
Antiinfecciosos , Bacillus , Proteínas Bacterianas/metabolismo , Aminoácidos , Antibacterianos/química , Biocatálisis , Brevibacillus , Isoleucina , Leucina , Lipopéptidos/genética , Metionina , Simulación del Acoplamiento Molecular , Valina
19.
J Appl Microbiol ; 132(2): 1330-1342, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34480826

RESUMEN

AIMS: Brevilaterin B is a natural antimicrobial lipopeptide produced by Brevibacillus laterosporus S62-9. However, its antifungal spectrum and modes of action are still unclear. Herein, we investigated the detailed antifungal activity of brevilaterin B against 33 pathogenic fungi and the antifungal effects against two sensitive fungi in vitro and in vivo. METHODS AND RESULTS: Brevilaterin B exhibited inhibitory activity against 33 pathogenic fungi involved in plant disease and food spoilage at the minimum inhibitory concentrations (MICs) range of 16-128 µg ml-1 . The antifungal effects were further studied by Fusarium oxysporum and Penicillium chrysogenum. Both spore germination and mycelium growth were inhibited by brevilaterin B at sub-MIC. Transmission electron microscopy and fluorescent dye staining assays indicated brevilaterin B damaged cell integrity and induced apoptosis. In vivo tests, brevilaterin B inhibited the infection of F. oxysporum to Dendrobium officinale and P. chrysogenum to mandarin (Citrus reticulata) at 500 µg ml-1 , respectively. CONCLUSIONS: Brevilaterin B showed broad-spectrum antifungal activity against 33 pathogenic fungi. And its antifungal modes of action were proposed as damaging cell integrity and inducing cell apoptosis. The lipopeptide is promising to control F. oxysporum in the D. officinale and P. chrysogenum in the mandarin. SIGNIFICANCE AND IMPACT OF STUDY: The research provided insights into antifungal modes of action of brevilaterin B. The lipopeptide brevilaterin B is potential to be developed as a broad-spectrum antifungal agent for agricultural biocontrol and postharvest storage.


Asunto(s)
Fusarium , Penicillium chrysogenum , Antifúngicos/farmacología , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana
20.
AAPS PharmSciTech ; 23(6): 193, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821540

RESUMEN

This study aimed to prepare effervescent tablets of traditional Chinese medicine Xianganfang with fresh juice using a semi-solid 3D printer with three cartridge holders to seperate acid and alkali source by drug paste through model design to avoid sticking impact and premature effervescence during the tableting in the conventional preparation process. The powder of Xianganfang including fresh juice of Phyllanthus emblica and licorice extract was obtained by vacuum freeze-drying with 50% mannitol as cryoprotectant. Then, the formulation of 3D-printed effervescent tablets was investigated. Further 5% HPMC hydroalcoholic gel was mixed with sodium bicarbonate and freeze-dried Xianganfang powder to prepare alkali source and drug paste respectively while 30% PVP ethanol solution was mixed with tartaric acid to prepare acid source paste; these three pastes had good printability. The pastes of drug, acid, and alkali were loaded into three syringe cartridges separately and numbered as "3," "5," and "7," according to cartridge holders of the 3D printer, and printed in the order of "537,353,735" for separating acid and alkali by drug to avoid premature effervescence. And the basic printing parameters were optimized. The tablets were evaluated by the appearance, tablet weight variation, hardness, disintegration time, friability, pH, and stability. The physicochemical properties all conformed to the Chinese Pharmacopoeia 2020 edition. The content of the active ingredient gallic acid was 0.769 ± 0.019 mg/g. This study provided a new method to prepare effervescent tablets of traditional Chinese medicine with fresh juice using 3D printing technology.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Álcalis , Liberación de Fármacos , Excipientes/química , Polvos , Comprimidos/química , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA