RESUMEN
Deciphering the composition of the tumor microenvironment (TME) is critical for understanding tumorigenesis and to design immunotherapies. In the present study, we mapped genetic effects on cell-type proportions using single-cell and bulk RNA sequencing data, identifying 3,494 immunity quantitative trait loci (immunQTLs) across 23 cancer types from The Cancer Genome Atlas. Functional annotation revealed regulatory potential and we further assigned 1,668 genes that regulate TME composition. We constructed a combined immunQTL map by integrating data from European and Chinese colorectal cancer (CRC) samples. A polygenic risk score that incorporates these immunQTLs and hits on a genome-wide association study outperformed in CRC risk stratification within 447,495 multiethnic individuals. Using large-scale population cohorts, we identified that the immunQTL rs1360948 is associated with CRC risk and prognosis. Mechanistically, the rs1360948-G-allele increases CCL2 expression, recruiting regulatory T cells that can exert immunosuppressive effects on CRC progression. Blocking the CCL2-CCR2 axis enhanced anti-programmed cell death protein 1 ligand therapy. Finally, we have established a database (CancerlmmunityQTL2) to serve the research community and advance our understanding of immunogenomic interactions in cancer pathogenesis.
Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Linfocitos T Reguladores/inmunología , Regulación Neoplásica de la Expresión Génica , Pronóstico , Animales , Ratones , Predisposición Genética a la Enfermedad , Análisis de la Célula IndividualRESUMEN
BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.
RESUMEN
BACKGROUND: The hippocampus, with its complex subfields, is linked to numerous neuropsychiatric traits. While most research has focused on its global structure or a few specific subfields, a comprehensive analysis of hippocampal substructures and their genetic correlations across a wide range of neuropsychiatric traits remains underexplored. Given the hippocampus's high heritability, considering hippocampal and subfield volumes (HASV) as endophenotypes for neuropsychiatric conditions is essential. METHODS: We analyzed MRI-derived volumetric data of hippocampal and subfield structures from 41,525 UK Biobank participants. Genome-wide association studies (GWAS) on 24 HASV traits were conducted, followed by genetic correlation, overlap, and Mendelian randomization (MR) analyses with 10 common neuropsychiatric traits. Polygenic risk scores (PRS) based on HASV traits were also evaluated for predicting these traits. RESULTS: Our analysis identified 352 independent genetic variants surpassing a significance threshold of 2.1 × 10-9 within the 24 HASV traits, located across 93 chromosomal regions. Notably, the regions 12q14.3, 17q21.31, 12q24.22, 6q21, 9q33.1, 6q25.1, and 2q24.2 were found to influence multiple HASVs. Gene set analysis revealed enrichment of neural differentiation and signaling pathways, as well as protein binding and degradation. Of 240 HASV-neuropsychiatric trait pairs, 75 demonstrated significant genetic correlations (P < 0.05/240), revealing 433 pleiotropic loci. Particularly, genes like ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and ARL17B were involved in over 50 HASV-neuropsychiatric pairs. Leveraging Mendelian randomization analysis, we further confirmed that atrophy in the left hippocampus, right hippocampus, right hippocampal body, and right CA1-3 region were associated with an increased risk of developing Parkinson's disease (PD). Furthermore, PRS for all four HASVs were significantly linked to a higher risk of Parkinson's disease (PD), with the highest hazard ratio (HR) of 1.30 (95% CI 1.18-1.43, P = 6.15 × 10â»8) for right hippocampal volume. CONCLUSIONS: These findings highlight the extensive distribution of pleiotropic genetic determinants between HASVs and neuropsychiatric traits. Moreover, they suggest a significant potential for effectively managing and intervening in these diseases during their early stages.
Asunto(s)
Estudio de Asociación del Genoma Completo , Hipocampo , Humanos , Femenino , Masculino , Imagen por Resonancia Magnética , Herencia Multifactorial/genética , Trastornos Mentales/genética , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , AncianoRESUMEN
BACKGROUND: Peste des Petits Ruminants (PPR) is a world organization for animal health (WOAH) notifiable and economically important transboundary, highly communicable viral disease of small ruminants. PPR virus (PPRV) belongs to the genus Morbillivirus of the family Paramyxoviridae. AIM: The present cross-sectional epidemiological investigation was accomplished to estimate the apparent prevalence and identify the risk factors linked with peste des petits ruminants (PPR) in the previously neglected northern border regions of Pakistan. METHOD: A total of 1300 samples (serum = 328; swabs = 972) from 150 flocks/herds were compiled from sheep (n = 324), goats (n = 328), cattle (n = 324), and buffaloes (n = 324) during 2020-2021 and tested using ELISA for detection of viral antibody in sera or antigen in swabs. RESULTS: An overall apparent prevalence of 38.7% (504 samples) and an estimated true prevalence (calculated by the Rogan and Gladen estimator) of 41.0% (95% CI, 38.0-44 were recorded in the target regions. The highest apparent prevalence of 53.4% (85 samples) and the true prevalence of 57.0%, 95% Confidence Interval (CI) were documented in the Gilgit district and the lowest apparent prevalence of 53 (25.1%) and the true prevalence of 26.0%, 95% Confidence Interval (CI), 19.0-33.0) was reported in the Swat district. A questionnaire was designed to collect data about associated risk factors that were put into a univariable logistic regression to decrease the non-essential assumed risk dynamics with a P-value of 0.25. ArcGIS, 10.8.1 was used to design hotspot maps and MedCalc's online statistical software was used to calculate Odds Ratio (OR). Some of the risk factors significantly different (P < 0.05) in the multivariable logistic regression were flock/herd size, farming methods, nomadic animal movement, and outbreaks of PPR. The odds of large-sized flocks/herds were 1.7 (OR = 1.79; 95% Confidence Interval (CI) = 0.034-91.80%) times more likely to be positive than small-sized. The odds of transhumance and nomadic systems were 1.1 (OR = 1.15; 95% Confidence Interval (CI) = 0.022-58.64%) and 1.0 (OR = 1.02; 95% Confidence Interval (CI) = 0.020-51.97%) times more associated to be positive than sedentary and mixed farming systems, respectively. The odds of nomadic animal movement in the area was 0.7 (OR = 0.57; 95% Confidence Interval (CI) = 0.014-38.06%) times more associated to be positive than in areas where no nomadic movement was observed. In addition, the odds of an outbreak of PPR in the area were 1.0 (OR = 1.00; 95% Confidence Interval (CI) = 0.018-46.73%) times more associated to be positive than in areas where no outbreak of PPR was observed. CONCLUSIONS: It was concluded that many northern regions considered endemic for PPR, large and small ruminants are kept and reared together making numerous chances for virus transmission dynamic, so a big threats of disease spread exist in the region. The results of the present study would contribute to the global goal of controlling and eradicating PPR by 2030.
Asunto(s)
Enfermedades de las Cabras , Cabras , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Enfermedades de las Ovejas , Animales , Pakistán/epidemiología , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Factores de Riesgo , Prevalencia , Ovinos , Estudios Transversales , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/virología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/virología , Virus de la Peste de los Pequeños Rumiantes/aislamiento & purificación , Bovinos , Búfalos/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Anticuerpos Antivirales/sangreRESUMEN
Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.
Asunto(s)
Neoplasias Colorrectales , Grasas de la Dieta , Humanos , Estudios Prospectivos , Estudios de Casos y Controles , Grasas de la Dieta/efectos adversos , Factores de Riesgo , Ácidos Grasos/efectos adversos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamenteRESUMEN
Peste des petits ruminants virus (PPRV) infection leads to autophagy, and the molecular mechanisms behind this phenomenon are unclear. Here, we demonstrate that PPRV infection results in morphological changes of the endoplasmic reticulum (ER) and activation of activating transcription factor 6 (ATF6) of the ER stress unfolded protein response (UPR). Knockdown of ATF6 blocked the autophagy process, suggesting ATF6 is necessary for PPRV-mediated autophagy induction. Further study showed that PPRV infection upregulates expression of the ER-anchored adaptor protein stimulator of interferon genes (STING), which is well-known for its pivotal roles in restricting DNA viruses. Knockdown of STING suppressed ATF6 activation and autophagy induction, implying that STING functions upstream of ATF6 to induce autophagy. Moreover, the STING-mediated autophagy response originated from the cellular pattern recognition receptor melanoma differentiation-associated gene 5 (MDA5). The absence of MDA5 abolished the upregulation of STING and the activation of autophagy. The deficiency of autophagy-related genes (ATG) repressed the autophagy process and PPRV replication, while it had no effect on MDA5 or STING expression. Overall, our work revealed that MDA5 works upstream of STING to activate ATF6 to induce autophagy. IMPORTANCEPPRV infection induces cellular autophagy; however, the intracellular responses and signaling mechanisms that occur upon PPRV infection are obscure, and whether innate immune responses are linked with autophagy to regulate viral replication is largely unknown. Here, we uncovered that the innate immune sensor MDA5 initiated the signaling cascade by upregulating STING, which is best known for its role in anti-DNA virus infection by inducing interferon expression. We first provide evidence that STING regulates PPRV replication by activating the ATF6 pathway of unfolded protein responses (UPRs) to induce autophagy. Our results revealed that in addition to mediating responses to foreign DNA, STING can cross talk with MDA5 to regulate the cellular stress response and autophagy induced by RNA viruses; thus, STING works as an adaptor protein for cellular stress responses and innate immune responses. Modulation of STING represents a promising approach to control both DNA and RNA viruses.
Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Autofagia , Interferones/metabolismo , CabrasRESUMEN
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-Noxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Dieta , Metaboloma , Biotransformación , Conducta AlimentariaRESUMEN
BACKGROUND: Human periodontal ligament cells (hPDLCs) can be applied in periodontal regeneration engineering to repair the tissue defects related to periodontitis. Theoretically, it can affect the vitality of hPDLCs that cell aging increases apoptosis and decreases autophagy. Autophagy is a highly conserved degradation mechanism, which degrades the aging and damaged intracellular organelles through autophagy lysosomes to maintain normal intracellular homeostasis. Meanwhile, autophagy-related gene 7 (ATG7) is a key gene that regulates the level of cellular autophagy. OBJECTIVE: This study was to explore the effects of autophagic regulation of aging hPDLCs on cell proliferation and cell apoptosis. METHODS: A cell model of aging hPDLCs overexpressing and silencing ATG7 were respectively constructed by lentiviral vectors in vitro. A series of experiments was performed to confirm relevant senescence phenotype on aging hPDLCs, and to detect the effects of changes in autophagy on their proliferation and apoptosis-related factors in aging hPDLCs. RESULTS: The results showed that overexpression of ATG7 could motivate autophagy, promoting proliferation of aging hPDLCs and inhibiting apoptosis synchronously (P < 0.05). On the contrary, suppressing autophagy levels by silencing ATG7 would inhibit cell proliferation and accelerate cell senescence (P < 0.05). CONCLUSION: ATG7 regulates the proliferation and apoptosis of aging hPDLCs. Hence, autophagy may act as a target to delay senescence of hPDLCs, which can be helpful in the future in-depth study on regeneration and functionalization of periodontal supporting tissues.
Asunto(s)
Senescencia Celular , Ligamento Periodontal , Humanos , Diferenciación Celular/genética , Ligamento Periodontal/metabolismo , Células Cultivadas , Senescencia Celular/genética , Proliferación Celular/genética , Apoptosis/genética , Autofagia/genética , OsteogénesisRESUMEN
This study was carried out to investigate the correlation between the onset of peripheral neuropathy and levels of hypersensitive C-reactive protein (hs-CRP), interleukin 1ß (IL-1ß) and IL-6 in senile Parkinson's disease (PD) patients. For this purpose, a total of 60 PD patients and 60 age-matched healthy subjects were enrolled in this study and received the assessment for peripheral nerves by using the quantified method. Besides, levels of hs-CRP, IL-1ß and IL-6 in serum were determined to analyze the correlation between the clinical features, including the severity of PD and cognitive decline, and the levels of hs-CRP, IL-1ß and IL-6. Results showed that PD patients had more cases of peripheral neuropathy than those in the healthy control group. Levels of hs-CRP, IL-1ß and IL-6 in the serum of PD patients were much higher than those in the healthy control (P<0.05). Besides, PD patients had lower scores of MMSE and MoCA but higher CNPI scores when compared to the healthy control group. As a result, we found that the severity of peripheral neuropathy was in a positive correlation with the levels of hs-CRP, IL-1ß and IL-6. It was concluded that PD patients generally have peripheral neuropathy that may correlate with the increases in the levels of hs-CRP, IL-1ß and IL-6, and early intervention may mitigate the development and progression of peripheral neuropathy.
Asunto(s)
Enfermedad de Parkinson , Enfermedades del Sistema Nervioso Periférico , Humanos , Proteína C-Reactiva/metabolismo , Interleucina-1beta , Interleucina-6RESUMEN
BACKGROUND: Canine distemper virus (CDV) is one of the most contagious and lethal viruses known to the Canidae, with a very broad and expanding host range. Autophagy serves as a fundamental stabilizing response against pathogens, but some viruses have been able to evade or exploit it for their replication. However, the effect of autophagy mechanisms on CDV infection is still unclear. RESULTS: In the present study, autophagy was induced in CDV-infected Vero cells as demonstrated by elevated LC3-II levels and aggregation of green fluorescent protein (GFP)-LC3 spots. Furthermore, CDV promoted the complete autophagic process, which could be determined by the degradation of p62, co-localization of LC3 with lysosomes, GFP degradation, and accumulation of LC3-II and p62 due to the lysosomal protease inhibitor E64d. In addition, the use of Rapamycin to promote autophagy promoted CDV replication, and the inhibition of autophagy by Wortmannin, Chloroquine and siRNA-ATG5 inhibited CDV replication, revealing that CDV-induced autophagy facilitated virus replication. We also found that UV-inactivated CDV still induced autophagy, and that nucleocapsid (N) protein was able to induce complete autophagy in an mTOR-dependent manner. CONCLUSIONS: This study for the first time revealed that CDV N protein induced complete autophagy to facilitate viral replication.
Asunto(s)
Virus del Moquillo Canino , Moquillo , Enfermedades de los Perros , Proteínas de la Nucleocápside , Replicación Viral , Animales , Perros , Autofagia , Chlorocebus aethiops , Virus del Moquillo Canino/fisiología , Enfermedades de los Perros/virología , Células Vero , Proteínas de la Nucleocápside/metabolismoRESUMEN
Tens of thousands of long non-coding RNAs (lncRNAs) have been identified through RNA-seq analysis, but the biological and pathological significance remains unclear. By integrating the genome-wide lncRNA data with a cross-ancestry meta-analysis of PDAC GWASs, we depicted a comprehensive atlas of pancreatic ductal adenocarcinoma (PDAC)-associated lncRNAs, containing 1,204 lncRNA (445 novel lncRNAs and 759 GENCODE annotated lncRNAs) and 4,368 variants. Furthermore, we found that PDAC-associated lncRNAs could function by altering chromatin activity, transcription factors, and RNA-binding proteins binding affinity. Importantly, genetic variants linked to PDAC are preferentially found at PDAC-associated lncRNA regions, supporting the biological and clinical relevance of PDAC-associated lncRNAs. Finally, we prioritized a novel transcript (MICT00000110172.1) of RP11-638I2.4 as a potential tumor promoter. MICT00000110172.1 is able to reinforce the interaction with YY1, which could reverse the effect of YY1 on pancreatic cancer cell cycle arrest to promote the pancreatic cancer growth. G > A change at rs2757535 in the second exon of MICT00000110172.1 induces a spatial structural change and creates a target region for YY1 binding, which enforces the effect of MICT00000110172.1 in an allele-specific manner, and thus confers susceptibility to tumorigenesis. In summary, our results extend the repertoire of PDAC-associated lncRNAs that could act as a starting point for future functional explorations, and the identification of lncRNA-based target therapy.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Alelos , Factor de Transcripción YY1/genéticaRESUMEN
Although genome-wide association studies (GWASs) have identified over 100 colorectal cancer (CRC) risk loci, an understanding of causal genes or risk variants and their biological functions in these loci remain unclear. Recently, genomic loci 10q26.12 with lead SNP rs1665650 was identified as an essential CRC risk loci of Asian populations. However, the functional mechanism of this region has not been fully clarified. Here, we applied an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk loci 10q26.12. Notably, HSPA12A had the most significant effect among the identified genes and functioned as a crucial oncogene facilitating cell proliferation. Moreover, we conducted an integrative fine-mapping analysis to identify putative casual variants and further explored their association with CRC risk in a large-scale Chinese population consisting of 4054 cases and 4054 controls and also independently validated in 5208 cases and 20,832 controls from the UK biobank cohort. We identified a risk SNP rs7093835 in the intron of HSPA12A that was significantly associated with an increased risk of CRC (OR 1.23, 95% CI 1.08-1.41, P = 1.92 × 10-3). Mechanistically, the risk variant could facilitate an enhancer-promoter interaction mediated by the transcriptional factor (TF) GRHL1 and ultimately upregulate HSPA12A expression, which provides functional evidence to support our population findings. Collectively, our study reveals the important role of HSPA12A in CRC development and illustrates a novel enhancer-promoter interaction module between HSPA12A and its regulatory elements rs7093835, providing new insights into the etiology of CRC.
Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Regiones Promotoras Genéticas , Riesgo , Neoplasias Colorrectales/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Proteínas HSP70 de Choque Térmico/genéticaRESUMEN
China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.
Asunto(s)
Metales de Tierras Raras , Itrio , Humanos , Animales , Ratones , Masculino , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Especies Reactivas de Oxígeno , Apoptosis , Autofagia , ADN Mitocondrial , Genitales MasculinosRESUMEN
The aim was to explore the implications of follicular output rate (FORT), ovarian sensitivity index (OSI), ovarian response prediction index (ORPI), and follicle-to-oocyte index (FOI) in low-prognosis patients defined by POSEIDON criteria. In total, 4030 fresh in vitro fertilization (IVF) cycles from January 2013 to October 2021 were included in this retrospective cohort analysis and were categorized into four groups based on the POSEIDON criteria. The FORT between Groups 1 and 2 (0.61 ± 0.34 vs. 0.65 ± 0.35, P = 0.081) and Groups 3 and 4 (1.08 ± 0.82 vs. 1.09 ± 0.94, P = 0.899) were similar. The OSI in the order from the highest to the lowest were 3.01 ± 1.46 in Group 1, 2.28 ± 1.09 in Group 2, 1.54 ± 1.04 in Group 3, and 1.34 ± 0.96 in Group 4 (P < 0.001). The trend in the ORPI values was consistent with that in the OSI. FORT, OSI, ORPI, and FOI complemented each other and offered excellent effectiveness in reflecting ovarian reserve and response, but they were not good predictors of clinical pregnancy rate (CPR) from IVF.
Asunto(s)
Reserva Ovárica , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Reserva Ovárica/fisiología , Índice de Embarazo , Fertilización In Vitro , Pronóstico , Inducción de la OvulaciónRESUMEN
Foot-and-mouth disease (FMD) is one of the most contagious livestock diseases in the world, posing a constant global threat to the animal trade and national economies. The chemokine C-X-C motif chemokine ligand 13 (CXCL13), a biomarker for predicting disease progression in some diseases, was recently found to be increased in sera from mice infected with FMD virus (FMDV) and to be associated with the progression and severity of the disease. However, it has not yet been determined which cells are involved in producing CXCL13 and the signaling pathways controlling CXCL13 expression in these cells. In this study, the expression of CXCL13 was found in macrophages and T cells from mice infected with FMDV, and CXCL13 was produced in bone-marrow-derived macrophages (BMDMs) by activating the nuclear factor-kappaB (NF-κB) and JAK/STAT pathways following FMDV infection. Interestingly, CXCL13 concentration was decreased in sera from interleukin-10 knock out (IL-10-/-) mice or mice blocked IL-10/IL-10R signaling in vivo after FMDV infection. Furthermore, CXCL13 was also decreased in IL-10-/- BMDMs and BMDMs treated with anti-IL-10R antibody following FMDV infection in vitro. Lastly, it was demonstrated that IL-10 regulated CXCL13 expression via JAK/STAT rather than the NF-κB pathway. In conclusion, the study demonstrated for the first time that macrophages and T cells were the cellular sources of CXCL13 in mice infected with FMDV; CXCL13 was produced in BMDMs via NF-κB and JAK/STAT pathways; and IL-10 promoted CXCL13 expression in BMDMs via the JAK/STAT pathway.
Asunto(s)
Virus de la Fiebre Aftosa , Ratones , Animales , FN-kappa B/metabolismo , Transducción de Señal , Interleucina-10/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Macrófagos/metabolismo , Quimiocina CXCL13/metabolismoRESUMEN
Holotrichia parallela is an important plant pest. Comparative feeding experiments showed that the egg production, oviposition duration and survival rate of H. parallela beetles were significantly higher when they fed on elm leaves than when they fed on willow or purpus privet leaves. RNA sequencing was used to determine transcriptomic changes associated with oviposition. Comparative transcriptome analysis revealed that the beetles that fed on elm and willow had a total of 171 genes with differential expression. When the beetles fed on elm and purpus privet, 3568 genes had differential expression. The vitellogenesis, ovarian serine protease, odorant-binding proteins, acyl-CoA synthetase and follicle cell proteins were commonly upregulated genes in elm-fed beetles compared with those fed on willow/purpus privet leaves. The involvement of the follicle cell protein 3C gene in the regulation of oviposition was confirmed using RNA interference. The results provide insights into the molecular mechanisms underlying oviposition in H. parallela feeding on different host plants. This study also describes a method for identifying potentially effective genes for pest control.
Asunto(s)
Chlorophyceae , Escarabajos , Femenino , Animales , Transcriptoma , Oviposición , Perfilación de la Expresión Génica , Escarabajos/genéticaRESUMEN
OBJECTIVES: Premature ovarian insufficiency (POI) refers to the decline and cessation of ovarian functions in women under 40 years of age. Melatonin (MT) acts as a protective for the ovary. This study elucidated the role of MT in autophagy of granulosa cells (GCs) in POI via modulating the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. METHODS: The expression levels of microRNA (miR)-15a-5p, signal transducer and activator of transcription 3 (Stat3), and relevant hormones in the clinically collected serum samples of POI patients and healthy controls were examined. Human ovarian granulosa-like tumor cells (KGN) underwent serum starvation (SS) treatment to induce POI cell models and then received MT treatment. The expression levels of miR-15a-5p, Stat3, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR in KGN cells were tested via quantitative real-time polymerase chain reaction and Western blotting. KGN cell viability was assessed by MTT assay and the protein levels of autophagy-related markers Beclin-1, microtubule-associated protein light chain 3 II/I, and p62 were detected by Western blotting. The binding relation between miR-15a-5p and Stat3 was verified via the dual-luciferase reporter gene assay. Functional rescue experiments were performed to probe the underlying role of miR-15a-5p/Stat3/the PI3K-Akt-mTOR pathway in KGN cell autophagy. RESULTS: miR-15a-5p was increased whilst Stat3 was decreased in the serum of POI patients and SS-induced KGN cells. MT inhibited miR-15a-5p and Stat3, activated the PI3K-Akt-mTOR pathway, and repressed cell autophagy in SS-induced KGN cells. miR-15a-5p targeted and repressed Stat3 expression. Upregulation of miR-15a-5p or downregulation of Stat3 or the PI3K-Akt-mTOR pathway promoted KGN cell autophagy. CONCLUSION: MT suppressed miR-15a-5p and activated Stat3 and the PI3K-Akt-mTOR pathway, finally impeding SS-induced autophagy of GCs.
Asunto(s)
Melatonina , Menopausia Prematura , MicroARNs , Insuficiencia Ovárica Primaria , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melatonina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , Serina-Treonina Quinasas TOR/metabolismo , Células de la Granulosa/metabolismo , AutofagiaRESUMEN
The cardiovascular system is highly sensitive to toxic metal exposure and trace element dysregulation. However, previous findings relating to metal exposure and coronary heart disease (CHD) have partially been conflicting and difficult to exhibit the combined effect of metal mixtures. This case-control study investigated urinary concentrations of ten metal/metalloids among clinically-diagnosed CHD patients and healthy adults during May to December 2021 in Guangzhou, China. We found that cadmium (Cd) status in urine from CHD patients was remarkably higher than its reference, while chromium (Cr), nickel (Ni), copper (Cu) and selenium (Se) concentrations were lower (p < 0.05). Spearman correlation analysis showed that urinary arsenic (As) and Se were highly correlated (rs=0.830, p < 0.001), indicating their similar sources. Principal component analysis (PCA) exhibited denser distribution of Cd-Sn in cases than in controls. Logistic regression analysis exhibited significant associations between urinary Cd (adjusted OR: 1.965, 95% CI: 1.222-3.162), Se (0.787, 95% CI: 0.695-0.893), Ni (0.493, 95% CI: 0.265-0.916) and CHD risk. Quantile g-computation showed negative joint effect of metal mixtures on CHD (adjusted OR: 0.383, 95% CI: 0.159-0.932) (p < 0.05), suggesting the need for supplementing essential trace elements. The negative partial effect was primarily attributed to Se and Ni, while positive partial effect was mainly due to tin (Sn) and Cd. Nevertheless, we also found a quantile increase of Cd-Sn level was negatively correlated with 8.26% (95% CI: 3.44-13.08%) decrease of high-density lipoprotein cholesterol (p < 0.001), and 71.2% of the joint effect attributed to Cd. Based on random forest, Se, Cd and Ni were found to be the dominant influencing factors of CHD. The role of Ni in CHD is yet to be uncovered, while excessive Cd exposure and low Se status among CHD patients need to be mitigated.
Asunto(s)
Arsénico , Enfermedad Coronaria , Metales Pesados , Selenio , Oligoelementos , Adulto , Arsénico/análisis , Cadmio/toxicidad , Estudios de Casos y Controles , China/epidemiología , Enfermedad Coronaria/epidemiología , Humanos , Metales/análisis , Metales Pesados/análisis , Níquel/análisis , Selenio/análisis , Oligoelementos/análisisRESUMEN
INTRODUCTION: The purpose of this study was to evaluate whether the blastocyst morphologic grading and the protocol of controlled ovarian stimulation (COS) would influence pregnancy outcomes, aiming to provide guidance when choosing blastocyst transfer. METHODS: The clinical data of 612 patients who received single fresh blastocyst transfer for first cycle, as well as the data of 253 patients who had already delivered were analyzed retrospectively. The patients were divided into two groups according to blastocyst formation time (D5 or D6). The following subgroup analyses were performed: (i) the morphologic grading of blastocyst and (ii) the protocol of COS. RESULTS: We observed that D5 single embryo transfer (SET) were associated with higher clinical pregnancy rate (CPR, 59.04% vs. 31.73%, P < 0.001) and live birth rate (LBR, 43.90% vs. 24.04%, P < 0.001) than D6 SET following fresh cycle. Patients in D5 group experienced more good blastocysts transfer (45.47%vs. 13.46%, P < 0.001) and less poor blastocysts transfer (9.64%vs. 45.19%, P < 0.001) than patients in D6 group. As to early stage and good quality blastocysts, the CPR and LBR were similar between D5 and D6 group. GnRH antagonist protocol had a demonstrable inferiority comparing with the early-follicular-phase long-acting GnRH-agonist long protocol (EFLL) or the mid-luteal-phase long-acting GnRH-agonist long protocol (MLLL) with regard to the CPR and LBR in D6-SET group. CONCLUSIONS: The analysis found that ovarian reserve of patients in D6-SET group was comparatively worse than that of patients in D5-SET group and D6-SET patients represented a subgroup of infertility patients usually having relatively poor embryo quality. The results should be interpreted with caution as the very low numbers in the respective group limited the use of statistical tests and the real significance values.
Asunto(s)
Blastocisto , Transferencia de Embrión , Blastocisto/fisiología , Transferencia de Embrión/métodos , Femenino , Hormona Liberadora de Gonadotropina , Humanos , Embarazo , Índice de Embarazo , Estudios RetrospectivosRESUMEN
Substantial evidence highlighted the critical role of long non-coding RNAs (lncRNA) in driving hepatocarcinogenesis. We hypothesized that functional variants in genome-wide association studies (GWASs) associated loci might alter the expression levels of lncRNAs and contribute to the development of hepatocellular carcinoma (HCC). Here, we prioritized potentially cis-expression quantitative trait loci-based single nucleotide polymorphism (SNP)-lncRNA association together with the physical interaction by the analyses from Hi-C data in GWAS loci of chronic hepatitis B and HCC. Subsequently, by leveraging two-stage case-control study (1738 hepatitis B [HBV]) related HCC cases and 1988 HBV persistent carriers) and biological assays, we identified that rs2647046 was significantly associated with HCC risk (odds ratio = 1.26, 95% CI = 1.11 to 1.43, P = 4.14 × 10-4). Luciferase reporter assays and electrophoretic mobility shift assays showed that rs2647046 A allele significantly increased transcriptional activity via influencing transcript factor binding affinity. Allele-specific chromosome conformation capture assays revealed that enhancer with rs2647046 interacted with the HLA-DQB1-AS1 promoter to allele-specifically influence its expression by CTCF-mediated long-range loop. Cell proliferation assays indicated that HLA-DQB1-AS1 is a potential oncogene in HCC. Our study showed HLA-DQB1-AS1 regulated by a causal SNP in a long-range interaction manner conferred the susceptibility to HCC, suggesting an important mechanism of modulating lncRNA expression for risk-associated SNPs in the etiology of HCC.