Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(13): 136802, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034492

RESUMEN

Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of ∼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.

2.
Phys Rev Lett ; 124(14): 147206, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338972

RESUMEN

Nanographenes with sublattice imbalance host a net spin according to Lieb's theorem for bipartite lattices. Here, we report the on-surface synthesis of atomically precise nanographenes and their atomic-scale characterization on a gold substrate by using low-temperature noncontact atomic force microscopy and scanning tunneling spectroscopy. Our results clearly confirm individual nanographenes host a single spin of S=1/2 via the Kondo effect. In covalently linked nanographene dimers, two spins are antiferromagnetically coupled with each other as revealed by inelastic spin-flip excitation spectroscopy. The magnetic exchange interaction in dimers can be well engineered by tuning the local spin density distribution near the connection region, consistent with mean-field Hubbard model calculations. Our work clearly reveals the emergence of magnetism in nanographenes and provides an efficient way to further explore the carbon-based magnetism.

3.
Phys Rev Lett ; 123(25): 257001, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31922797

RESUMEN

Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.

4.
Nano Lett ; 17(5): 3035-3039, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28415840

RESUMEN

Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

5.
Phys Rev Lett ; 116(25): 257003, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391745

RESUMEN

Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

6.
ACS Nano ; 14(2): 2366-2372, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32003558

RESUMEN

A two-dimensional topological insulator features (only) one bulk gap with nontrivial topology, which protects one-dimensional boundary states at the Fermi level. We find a quantum phase of matter beyond this category: a multiple topological insulator. It possesses a ladder of topological gaps; each gap protects a robust edge state. We prove a monolayer of van der Waals material PtBi2 as a two-dimensional multiple topological insulator. By means of scanning tunneling spectroscopy, we directly visualize the one-dimensional hot electron (and hole) channels with nanometer size on the samples. Furthermore, we confirm the topological protection of these channels by directly demonstrating their robustness to variations of crystal orientation, edge geometry, and sample temperature. The discovered topological hot electron materials may be applied as efficient photocatalysts in the future.

7.
Adv Mater ; 31(52): e1905582, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31721337

RESUMEN

Superconducting topological crystalline insulators are expected to form a new type of topological superconductors to host Majorana zero modes under the protection of lattice symmetries. The bulk superconductivity of topological crystalline insulators can be induced through chemical doping and the proximity effect. However, only conventional full gaps are observed, so the existence of topological superconductivity in topological crystalline insulators is still controversial. Here, the successful fabrication of atomically flat lateral and vertical Sn1- x Pbx Te-Pb heterostructures by molecular beam epitaxy is reported. The superconductivity of the Sn1- x Pbx Te-Pb heterostructures can be directly investigated by scanning tunneling spectroscopy. Unconventional peak-dip-hump gap features and fourfold symmetric quasiparticle interference patterns taken at the zero energy in the superconducting gap support the presence of the topological superconductivity in superconducting Sn1- x Pbx Te. Strong superconducting proximity effect and easy preparation of various constructions between Sn1- x Pbx Te and Pb make the heterostructures to be a promising candidate for topological superconducting devices to detect and manipulate Majorana zero modes in the future.

8.
Nat Commun ; 9(1): 4153, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297777

RESUMEN

Non-symmorphic crystals are generating great interest as they are commonly found in quantum materials, like iron-based superconductors, heavy-fermion compounds, and topological semimetals. A new type of surface state, a floating band, was recently discovered in the nodal-line semimetal ZrSiSe, but also exists in many non-symmorphic crystals. Little is known about its physical properties. Here, we employ scanning tunneling microscopy to measure the quasiparticle interference of the floating band state on ZrSiSe (001) surface and discover rotational symmetry breaking interference, healing effect and half-missing-type anomalous Umklapp scattering. Using simulation and theoretical analysis we establish that the phenomena are characteristic properties of a floating band surface state. Moreover, we uncover that the half-missing Umklapp process is derived from the glide mirror symmetry, thus identify a non-symmorphic effect on quasiparticle interferences. Our results may pave a way towards potential new applications of nanoelectronics.

9.
Rev Sci Instrum ; 88(7): 073902, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28764532

RESUMEN

Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO3(111) substrate.

10.
ACS Nano ; 10(9): 8450-6, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27617796

RESUMEN

van der Waals (vdW) heterostructures of two-dimensional materials exhibit properties and functionalities that can be tuned by stacking order and interlayer coupling. Although direct covalent bonding is not expected at the heterojunction, the formation of an interface nevertheless breaks the symmetries of the layers, and the orthogonal requirement of the wave functions can lead to indirect interfacial coupling, creating new properties and functionalities beyond their constituent layers. Here, we fabricate graphene/topological insulator vdW heterostructure by transferring chemical vapor deposited graphene onto Bi2Se3 grown by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we observe a giant spin-orbit splitting of the graphene Dirac states up to 80 meV. Density functional theory calculations further reveal that this splitting of the graphene bands is a consequence of the breaking of inversion symmetry and the orthogonalization requirement on the overlapping wave functions at the interface, rather than simple direct bonding. Our findings reveal two intrinsic characteristics-the symmetry breaking and orthogonalization of the wave functions at the interface-that underlines the properties of vdW heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA