Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inflamm Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844677

RESUMEN

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2745-2753, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812175

RESUMEN

This study investigated the protective effect of ginsenoside Rg_1(GRg_1) on oxygen and glucose deprivation/reoxygenation(OGD/R)-injured rat adrenal pheochromocytoma(PC12) cells and whether the underlying mechanism was related to the regulation of inositol-requiring enzyme 1(IRE1)-c-Jun N-terminal kinase(JNK)-C/EBP homologous protein(CHOP) signaling pathway. An OGD/R model was established in PC12 cells, and PC12 cells were randomly classified into control, model, OGD/R+GRg_1(0.1, 1, 10 µmol·L~(-1)), OGD/R+GRg_1+rapamycin(autophagy agonist), OGD/R+GRg_1+3-methyladenine(3-MA,autophagy inhibitor), OGD/R+GRg_1+tunicamycin(endoplasmic reticulum stress agonist), OGD/R+GRg_1+4-phenylbutyric acid(4-PBA, endoplasmic reticulum stress inhibitor), and OGD/R+GRg_1+3,5-dibromosalicylaldehyde(DBSA, IRE1 inhibitor) groups. Except the control group, the other groups were subjected to OGD/R treatment, i.e., oxygen and glucose deprivation for 6 h followed by reoxygenation for 6 h. Cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide(MTT) assay. Apoptosis was detected by Hoechst 33342 staining, and the fluorescence intensity of autophagosomes by the monodansylcadaverine(MDC) assay. Western blot was employed to determine the expression of autophagy-related proteins(Beclin1, LC3-Ⅱ, and p62) and the pathway-related proteins [IRE1, p-IRE1, JNK, p-JNK, glucose-regulated protein 78(GRP78), and CHOP]. The results showed that GRg_1 dose-dependently increased the viability of PC12 cells and down-regulated the expression of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, compared with the model group. Furthermore, GRg_1 decreased the apoptosis rate and MDC fluorescence intensity and up-regulated the expression of p62 protein. Compared with the OGD/R+GRg_1(10 µmol·L~(-1)) group, OGD/R+GRg_1+rapamycin and OGD/R+GRg_1+tunicamycin groups showed increased apoptosis rate and MDC fluorescence intensity, up-regulated protein levels of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, decreased relative cell survival rate, and down-regulated protein level of p62. The 3-MA, 4-PBA, and DBSA groups exerted the opposite effects. Taken together, GRg_1 may ameliorate OGD/R-induced PC12 cell injury by inhibiting autophagy via the IRE1-JNK-CHOP pathway.


Asunto(s)
Apoptosis , Ginsenósidos , Glucosa , Proteínas Serina-Treonina Quinasas , Factor de Transcripción CHOP , Animales , Ratas , Células PC12 , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Glucosa/metabolismo , Ginsenósidos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Oxígeno/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Complejos Multienzimáticos
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 14-19, 2023 Jan.
Artículo en Zh | MEDLINE | ID: mdl-36647637

RESUMEN

Nicotinamide (NAM) is the amide form of niacin and one of the precursors of nicotinamide adenine dinucleotide (NAD +). NAM can be used as a dietary supplement or clinical therapeutic drug to replenish NAD + levels in the human body and participate in key bodily functions such as cellular metabolism and DNA repair. NAM has the advantage of low cost, wide availability, and sound biosafety. It also has multiple biological functions, including antibacterial effect, anti-inflammatory effect, and modulation of cellular immunity, producing significant ameliorative effects on skin and neurodegenerative diseases. However, most studies on NAM are still at the laboratory stage. Herein we reviewed the role and mechanism of NAM in the prevention and treatment of oral and systemic diseases, explored its potential as clinical therapeutic medication, provided some basis and references for the clinical application of nicotinamide in the prevention and treatment of various diseases, and discussed its prospects for future research and application.


Asunto(s)
NAD , Niacinamida , Humanos , Niacinamida/farmacología , Niacinamida/uso terapéutico , NAD/metabolismo , Piel/metabolismo , Boca/metabolismo , Cara
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(2): 268-273, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35332728

RESUMEN

Objective: To explore the effects of nicotinamide (NAM) on the growth, biofilm formation and exopolysaccharides (EPS) production of Streptococcus mutans. Methods: The minimum inhibitory concentration (MIC) of NAM on S. mutanswas determined by the planktonic bacterial susceptibility assay. The NAM mass concentrations were set as 1/2 MIC, 1/4 MIC and 1/8 MIC for hree separate treatment groups. Culture medium without NAM was used in the negative control group and culture medium containing 0.1 mg/mL NaF was used for the positive control group (except for the scanning electron microscopy). The growth curves of S. mutans under different NAM concentrations were drawn. Crystal violet assay and anthrone-sulfuric acid method were used to explore the effects of NAM on S. mutans biofilm formation and water-insoluble EPS production, respectively. The morphology and structure of S. mutansplanktons and biofilms after NAM treatment were observed by scanning electron microscopy. Results: The MIC of NAM on S. mutans was 32 µg/µL. After 16 µg/µL (1/2 MIC), 8 µg/µL (1/4 MIC) and 4 µg/µL (1/8 MIC) NAM treatments, S. mutans growth and biofilm formation were inhibited, with the 16 µg/µL NAM group displaying the most significant inhibitory effects. The synthesis of EPS decreased significantly in the 16 µg/µL and 8 µg/µL NAM groups in comparison with that of the negative control group (P<0.05). Under scanning electron microscope, the cell length of S. mutans was shortened, the cell width was extended, and the length/width ratio was decreased, showing significant difference when comparing the 16 µg/µL and 8 µg/µL NAM groups with the negative control group (P<0.05). Conclusion: Under the influence of NAM at certain concenrations, the growth, biofilm formation, and EPS synthesis of S. mutanswere inhibited.


Asunto(s)
Niacinamida , Streptococcus mutans , Biopelículas , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Niacinamida/farmacología
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(2): 263-267, 2022 Mar.
Artículo en Zh | MEDLINE | ID: mdl-35332727

RESUMEN

Objective: To study the effect of the frtR gene of TetR family on the acid production ability of Streptococcus mutans( S. mutans) and the bacteria's ability to induce tooth demineralization . Methods: The growth of two strains of S. mutans UA159, Δ frtR, the frtR gene in-frame deletion strain, and Δ frtR/pDL278- frtR, the complement strain, was examined. The structure of biofilm was observed by laser scanning confocal microscopy (LSCM). The quantitative determination of water-insoluble extracellular polysaccharide (EPS) in the bacterial biofilms was done by anthrone-sulfuric acid method. The acid production capacity of S. mutans was measured by glycolytic pH drop. The demineralization-inducing ability of the strains on bovine teeth was determined by transverse microradiography (TMR). Results: The growth curves of the strains showed that frtR did not affect the growth of S. mutans. According to the findings of LSCM observation, frtR did not affect the biofilm formation. According to the findings of the anthrone-sulfuric acid method, frtR did not have any significant impact on the EPS synthesis of S. mutans. The results of the glycolytic pH drop assay showed that the deletion of frtR delayed the rate of acid production by S. mutans when sucrose was the only carbon source. In addition, according to the TMR results, knocking out frtR reduced the depth and amount of demineralization induced by S. mutans on the surface of bovine teeth. Conclusion: The deletion of frtR can weaken the acid production ability and the demineralization ability of S. mutans.


Asunto(s)
Biopelículas , Streptococcus mutans , Animales , Bovinos , Streptococcus mutans/genética
6.
Zhongguo Zhong Yao Za Zhi ; 47(2): 484-491, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178993

RESUMEN

Amyloid ß-protein(Aß) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aß_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aß-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aß, and may reduce Aß-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.


Asunto(s)
Ginsenósidos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Ginsenósidos/farmacología , Humanos , Mitofagia/fisiología , Células PC12 , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Carcinogenesis ; 42(11): 1337-1346, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643214

RESUMEN

Genetic alterations in the cell cycle pathway are common in head and neck squamous cell carcinoma (HNSCC). We identified four novel HNSCC susceptibility loci (CDKN1C rs452338, CDK4 rs2072052, E2F2 rs3820028 and E2F2 rs2075993) through a two-stage matched case-control study. There was a combined effect among the four single nucleotide polymorphisms (SNPs), as the number of risk genotypes increased, the risk of HNSCC displayed an increasing trend (Ptrend < 0.001). And there were multiplicative interactions between rs452338 and rs2072052, rs2072052 and rs3820028, rs2072052 and rs2075993. Functional bioinformatics analysis and dual-luciferase reporter assay revealed that E2F2 rs2075993 T>C reduced the stability of E2F2 3'-UTR secondary structure and affected the binding of E2F2 to miR-940, which was up-regulated in HNSCC tumor tissues (P = 2.9e-8) and was correlated with poor overall survival of HNSCC (HR = 1.39, 95% CI = 1.02-1.90). In vitro assays, we discovered that the expression of miR-940 was regulated by METTL3, and miR-940 promoted the proliferation, migration and invasion, and inhibited the senescence and autophagy of tumor cells. In terms of mechanism, compared with rs2075993 allele T, we found that the protective variant rs2075993 allele C interfered with the translational inhibition of E2F2 by miR-940, resulting in increased expression of E2F2 protein, which further reduced the proliferation, migration, invasion, and increased the senescence of tumor cells.


Asunto(s)
Genes cdc , Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Regiones no Traducidas 3' , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , China , Factor de Transcripción E2F2/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Metiltransferasas/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Polimorfismo de Nucleótido Simple , Unión Proteica , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(1): 76-81, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33474893

RESUMEN

OBJECTIVE: To explore the differences in transcriptional levels between mutant strains of csn2 gene of CRISPR-Cas9 system of Streptococcus mutans( S. mutans) and wild-type strains. METHODS: The S. mutans UA159, csn2-gene-deleted strains (Δ csn2) and csn2-gene-covering strains (Δ csn2/pDL278- csn2) of S. mutans were cultivated. Total RNA was extracted, and high-throughput sequencing technology was used for transcriptome sequencing. Based on the GO analysis and the KEGG analysis of the differentially expressed genes, the biological processes involved were thoroughly examined. The qRT-PCR method was used to verify the transcriptome sequencing results. RESULTS: The transcriptome results showed that, compared with UA159, there were 176 genes in Δ csn2 whose gene expression changed more than one fold ( P<0.05), of which 72 were up-regulated and 104 were down-regulated. The GO enrichment analysis and the KEGG enrichment analysis revealed that both the up-regulated and down-regulated differentially expressed genes (DEG) were involved in amino acid transport and metabolism. In addition, the biological processes that up-regulated DEGs participated in were mainly related to carbohydrate metabolism, energy production and conversion, and transcription; down-regulated DEGs were mainly related to lipid metabolism, DNA replication, recombination and repair, signal transduction mechanisms, nucleotide transport and metabolism. The functions of some DEGs were still unclear. Results of qRT-PCR verified that the expressions of leuA, leuC and leuD(genes related to the formation of branched-chain amino acids) were significantly down-regulated in Δ csn2 when compared with UA159 and Δ csn2/pDL278- csn2. CONCLUSION: Through transcriptome sequencing and qRT-PCR verification, it was found that the expression of genes related to branched-chain amino acid synthesis and cell membrane permeability in Δ csn2 changed significantly.


Asunto(s)
Streptococcus mutans , Transcriptoma , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Perfilación de la Expresión Génica , Streptococcus mutans/genética
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 754-758, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34622588

RESUMEN

OBJECTIVE: To explore the effect of polystyrene (PS) and PS-polyvinylpyrrolidone (PVP) electrospun materials on the adhesion ability of Porphyromonas gingivalis( P. gingivalis), a common periodontal pathogen. METHODS: PS and PS-PVP electrospun materials were prepared with stainless steel needles in high-voltage electric field. The growth and adhesion of P. gingivalis on the surface of different materials were observed with scanning electron microscope (SEM). The changes in the amount of P. gingivalis biofilm formed on the surface of different materials were measured according to viable colony forming units (CFU). The effect of surface charge of the different materials on the adhesion ability of P. gingivalis was determined through changing the charge properties on the surface of the electrospun materials. RESULTS: SEM images showed that both PS and PS-PVP can be used to form electrospun fibers with a diameter of 0.2 µm. SEM images and CFU counts of the biofilm at 24 h and 48 h showed that there was a smaller amount of P. gingivalis biofilm on the surface of the two materials ( P<0.05). After treatment with tetrabutylammonium bromide (TBAB), the surface charge of the PS-PVP electrospun material changed from being negatively charged to being positively charged, and the amount of bacterial adhesion on the surface increased significantly in comparison to that of untreated PS and PS-PVP materials ( P<0.05). CONCLUSION: PS and PS-PVP electrospun materials can be used to reduce the adhesion ability of P. gingivalis on the surface of different materials, and this ability may be related to the surface charge properties of the materials.


Asunto(s)
Porphyromonas gingivalis , Povidona , Biopelículas , Fibras de la Dieta , Poliestirenos , Povidona/farmacología
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(6): 939-942, 2021 Nov.
Artículo en Zh | MEDLINE | ID: mdl-34841758

RESUMEN

Oral Microbiology is a vital component of the basic science of stomatology and an important compulsory course for undergraduate students of stomatology, focusing on the oral microbiology and microecology, the pathogenesis of oral infectious diseases, and the relationship between oral microbes and human health. Our faculty team have made reforms of the theory and laboratory teaching of the course Oral Microbiology. We have introduced in the classroom the concept of Three Comprehensive Approaches to Education-the full involvement of everyone, the through-course approach and all-round education-and offered inquiry-based instruction through a combination of extracting the core information from every chapter, using the core information as the foundation, integrating the core information with clinical problems, and using experiment operation to foster in the students an attitude of solving clinical problems through research. These teaching innovations improved the undergraduate students'motivation to learn. We evaluated the teaching effect with questionnaire surveys. The results suggested that the students showed high interest in learning and were satisfied with our teaching innovations. In addition, student performance evaluation for the course showed significant improvement, indicating that the instructional reform program of Oral Microbiology was conducive to students'understanding and mastery of the course content, improved student motivation to learn and their grades, and received positive reviews from the students. We report herein, from three aspects, the course innovations and the experiences gained. We discussed the significance of integrating ideological and political theories teaching in all courses and using innovative teaching materials and teaching models and, highlighted their importance in the education of stomatology students, and proposed suggestions to further improve the course design of Oral Microbiology.


Asunto(s)
Medicina Oral , Curriculum , Humanos , Aprendizaje , Estudiantes , Enseñanza
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 749-754, 2020 Nov.
Artículo en Zh | MEDLINE | ID: mdl-33236595

RESUMEN

OBJECTIVE: To study the antibacterial effect of berberine combined with amylmetacresol on Enterococcus faecalis. METHODS: Both dilution method and live bacteria CFU were used to determine the minimum inhibitory concentration (MIC) of berberine and amylmetacresol on E. faecalis. The killing effect of berberine and amylmetacresol on planktonic E. faecalis was detected by suspension quantitative germicidal test and live/dead bacteria staining. The effects of berberine and amylmetacresol on the structure of mature biofilm of E. faecalis was observed by scanning electron microscopy (SEM). The toxicity of berberine and amylmetacresol on human oral keratinocytes (HOK) was determined by CCK-8 cell proliferation and cytotoxicity assay and cytotoxicity LDH assay. RESULTS: The MIC of berberine was 512 µg/mL, and the MIC of amylmetacresol was 0.023 3%. 512 µg/mL berberine and 0.002 33% amylmetacresol had a weak killing effect on planktonic E. faecalis alone, while they showed a synergistic antibacterial effect in combination. Cell survival in the biofilm was only slightly changed by berberine and amylmetacresol. The structure of biofilm was obviously changed by berberine and amylmetacresol. 512 µg/mL berberine and 0.002 33% amylmetacresol alone or in combination showed the survival rate was much higher than the injury rate, suggesting berberine and amylmetacresol had a low cytotoxicity. CONCLUSION: Berberine and amylmetacresol had synergism against E. faecalis, and the biological safety of the combination use was better.


Asunto(s)
Berberina , Enterococcus faecalis , Antibacterianos/farmacología , Berberina/farmacología , Biopelículas , Cresoles , Humanos , Pruebas de Sensibilidad Microbiana
12.
Org Biomol Chem ; 17(27): 6570-6573, 2019 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31243406

RESUMEN

The ring-opening reaction of imidazo[1,5-a]quinolines under photoredox conditions has been described. With Eosin Y as the organophotoredox catalyst, synthetically useful and medicinally important imides were obtained in moderate to excellent yields under mild reaction conditions.

13.
Rev Invest Clin ; 71(3): 204-210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31184336

RESUMEN

BACKGROUND: Osteoporosis (OP) is common in patients with chronic obstructive pulmonary disease (COPD). The relationship between OP and COPD has been primarily studied in male patients, and few reports are available in postmenopausal women. OBJECTIVE: The purpose of this study was to investigate the association between bone mineral density (BMD) and COPD in postmenopausal women. METHODS: This cross-sectional study included 133 clinically stable female ex-smokers with confirmed COPD, and 31 age-matched "ex-smoker" female controls. We analyzed groups according to their airway obstruction category. BMD was measured on dual-energy X-ray absorptiometry images of the left femoral neck. RESULTS: Patients with COPD had lower T-scores and higher prevalence of osteopenia/OP than the control group. In the COPD group, the airway obstruction category was significantly associated with the T-score after adjustment for confounders. Multivariate logistic regression analysis showed COPD was an independent marker for increased risk of osteopenia/OP in postmenopausal women. CONCLUSIONS: COPD and airway obstruction category were strongly related to BMD. Postmenopausal women with COPD, especially those with severe airway obstruction, had a higher prevalence rate and a higher risk of osteopenia and OP than female controls without COPD.


Asunto(s)
Densidad Ósea/fisiología , Osteoporosis Posmenopáusica/epidemiología , Posmenopausia , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Absorciometría de Fotón , Anciano , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/fisiopatología , Enfermedades Óseas Metabólicas/epidemiología , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Persona de Mediana Edad , Prevalencia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Factores de Riesgo
14.
Angew Chem Int Ed Engl ; 57(5): 1376-1380, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29230927

RESUMEN

Reported is a highly enantioselective copper-catalyzed Markovnikov protoboration of unactivated terminal alkenes. A variety of simple and abundant feedstock α-olefins bearing a diverse array of functional groups and heterocyclic substituents can be used as substrates, and the reaction proceeds under mild reaction conditions at ambient temperature to provide expedient access to enantioenriched alkylboronic esters in good regioselectivity and with excellent enantiocontrol. Critical to the success of the protocol was the development and application of a novel, sterically hindered N-heterocyclic carbene, (R,R,R,R)-ANIPE, as the ligand for copper.

15.
Apoptosis ; 21(10): 1082-93, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27515513

RESUMEN

Apoptosis and degeneration coming mainly from chondrocytes are important mechanisms in the onset and progression of osteoarthritis. Specifically, advanced glycation end products (AGEs) play an important role in the pathogenesis of osteoarthritis. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist has a protective effect on cartilage. This study aims to evaluate the effect of pioglitazone on AGEs-induced chondrocyte apoptosis and degeneration and their underlying mechanism. The in vitro study shows that AGEs induce cleavage of caspase-3 and PARP, up-regulate MMP-13 expression, enhance chondrocyte apoptosis and down-regulate PPARγ expression in human primary chondrocytes, which is reversed by pioglitazone. Furthermore, AGEs activate phosphorylation of Erk, JNK, and p38, and pioglitazone reverses AGEs-induced phosphorylation of Erk and p38. AGEs-induced degradation of IκBα and translocation of nuclear NF-κB p65 is reversed by pioglitazone. Pretreatment of chondrocytes with SB202190 (p38 inhibitor), SP600125 (JNK inhibitor) and BAY-11-7082 (NF-κB inhibitor) inhibit AGEs-induced apoptosis and degeneration. In vivo experiments suggest that pioglitazone reverses AGEs-induced cartilage degeneration and apoptosis in a mouse model, as demonstrated by HE and Safranin O staining, immunohistochemical analyses of Type II collagen (Col II), metalloproteinases (MMPs) and caspase-3. These findings suggest that pioglitazone, a PPARγ agonist, inhibits AGEs-induced chondrocytes apoptosis and degeneration via suppressing the activation of MAPK and NF-κB.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Tiazolidinedionas/administración & dosificación , Animales , Caspasa 3/genética , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/enzimología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Metaloproteinasa 13 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Osteoartritis/enzimología , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Fosforilación , Pioglitazona , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
16.
Int J Mol Sci ; 17(5)2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27331809

RESUMEN

Mammalian tissue-specific stem cells and progenitors demonstrate differential DNA damage response. Neural progenitors in dentate gyrus of the hippocampus are known to undergo apoptosis after irradiation. Using a mouse model of hippocampal neuronal development, we characterized the apoptosis sensitivity of the different neural progenitor subpopulations in adult mouse dentate gyrus after irradiation. Two different bromodeoxyuridine incorporation paradigms were used for cell fate mapping. We identified two apoptosis sensitive neural progenitor subpopulations after irradiation. The first represented non-proliferative and non-newborn neuroblasts and immature neurons that expressed doublecortin, calretinin or both. The second consisted of proliferative intermediate neural progenitors. The putative radial glia-like neural stem cells or type-1 cells, regardless of proliferation status, were apoptosis resistant after irradiation. There was no evidence of radiation-induced apoptosis in the absence of the Trp53 (p53) gene but absence of Cdkn1a (p21) did not alter the apoptotic response. Upregulation of nuclear p53 was observed in neuroblasts after irradiation. We conclude that adult hippocampal neural progenitors may demonstrate differential p53-dependent apoptosis sensitivity after irradiation.


Asunto(s)
Apoptosis , Hipocampo/efectos de la radiación , Células-Madre Neurales/efectos de la radiación , Tolerancia a Radiación , Animales , Calbindina 2/genética , Calbindina 2/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Dominio Doblecortina , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuropéptidos/genética , Neuropéptidos/metabolismo , Radiación Ionizante , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
BMC Complement Altern Med ; 15: 425, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627468

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol (HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays. METHODS: The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments. RESULTS: ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones (levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD, the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. CONCLUSION: ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Sinergismo Farmacológico , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
18.
Zhongguo Zhong Yao Za Zhi ; 40(10): 1908-13, 2015 May.
Artículo en Zh | MEDLINE | ID: mdl-26390646

RESUMEN

In order to reveal feasibility of different concentrations of Ca2+ and SA on Platycodon grandiflorum under high temperature stress, the effects of Ca2+ on physiological index and related photosynthetic parameters were studied. Pot cultured P. grandiflorum leaves under the same outdoor conditions were sprayed with CaCl2 and SA separately, and then placed in the high incubator [35 degrees C/25 degrees C (day/night), light intensity 3 600 lx], and sprayed with distilled water at 25 degrees C and under high temperature stress were set as the control. The related photosynthesis, relative conductivity, contents of proline, malondialdehyde, soluble protein, activities of SOD and CAT, ASA and GSH content were measured. The results show that the 6 mmol x L(-1) CaCl2 and 1.5 mmol x L(-1) SA enhanced the activities of SOD and CAT, the contents of proline and soluble protein, and effectively reduced the damage of heat stress on cell membrance. At the same time, the exogenous Ca2+ and SA increased the contents of chlorophyll and carotenoid, the efficiency of leaf photosynthesis and ASA and GSH content, and thus effectively resisted the oxidative stress caused by high temperatures, but with the increasing concentration of spraying, P. grandiflorum decreased the ability to resist high temperature stress. In conclusion, the foliage spraying CaCl2 and SA could reduce the damage of high temperature stress on P. grandiflorum leaves.


Asunto(s)
Calcio/metabolismo , Fotosíntesis , Platycodon/metabolismo , Ácido Salicílico/metabolismo , Calor , Malondialdehído/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Estrés Fisiológico
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 382-388, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38660840

RESUMEN

OBJECTIVE: To confirm the direct regulatory effect of WTAP-mediated RNA m6A modification on the KDM4B gene in t (8;21) acute myeloid leukemia (AML) cells through MeRIP combined with reverse transcription real-time quantitative PCR (RT-qPCR) technology. METHODS: The lentivirus-mediated shRNA target WTAP or KDM4B gene was used to transfect the t (8;21) AML cell lines: Kasumi-1 and SKNO-1, and cells transfected with randomly shuffled shRNA as the control. Using the Ultrapure RNA Extraction Kit (DNase I) to extract RNA. The Magna MeRIPTM m6A Kit was used to enrich methylated modified fragments, and detect the m6A methylated RNA regions by RT-qPCR, and the protein and mRNA expression levels of WTAP and KDM4B in cells were detected by Western blot and reverse transcription real-time quantitative PCR (RT-qPCR). Colony formation assays were used to detect the colony ability of cells in vitro. RESULTS: Silencing the expression of WTAP in Kasumi-1 cells, the enrichment of m6A methylation modification was significantly decreased in the 3'UTR of KDM4B mRNA(P < 0.01), and the protein(P < 0.001) and mRNA (Kasumi-1:P < 0.001; SKNO-1: P < 0.01) expression levels of KDM4B were also significantly inhibited in Kasumi-1 and SKNO-1 cells upon WTAP knockdown (all P < 0.01), accompanied by a significant decrease in the colony-forming ability of both cell lines (both P < 0.01). CONCLUSION: In t(8;21) AML cell lines, WTAP could regulate the expression of KDM4B by regulating the m6A modification of the 3'UTR of KDM4B mRNA, and silencing the expression of KDM4B could inhibit the cellular proliferation in vitro.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Leucemia Mieloide Aguda , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mieloide Aguda/genética , Línea Celular Tumoral , Metilación , ARN Mensajero/genética , ARN Interferente Pequeño/genética
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 44(6): 911-5, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24490500

RESUMEN

OBJECTIVE: To investigate the regulatory function on physiology and virulence of VicK kinase activity in Streptococcus mutans. METHODS: PCR ligation mutagenesis was used to construct a vicK knock-out mutant, and kinase activity abolished VicK was expressed by a streptococcal vector in this vicK null mutant. Colony morphology, overnight culture, biofilm formation and gene expression involved in biofilm formation were analyzed. Delta VicK, strains harboring a complemented wild-type vicK, and a vector without insert were used as controls. RESULTS: Colonies of VicK(H217A) were smoother and more elevated than that of wild-type UA159 and complementary strain SMCVicK; cells from VicK(H217A) overnight culture coaggregated on the bottom of glass tubes; no obvious alteration was observed in VicK(H217A) biofilm; expressions of gbpB, ftf, gtfD were repressed while gtfB/C were up-regulated (P < 0.05). CONCLUSION: VicK kinase activity is important for maintaining normal growth, biofilm formation and expression of genes involved in biofilm formation in Streptococcus mutans.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Streptococcus mutans/fisiología , Biopelículas/crecimiento & desarrollo , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA