Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioorg Chem ; 145: 107188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377815

RESUMEN

Despite the advances of multistep enzymatic cascade reactions, their incorporation with abiotic reactions in living organisms remains challenging in synthetic biology. Herein, we combined microbial metabolic pathways and Pd-catalyzed processes for in-situ generation of bioactive conjugated oligomers. Our biocompatible one-pot coupling reaction utilized the fermentation process of engineered E. coli that converted glucose to styrene, which participated in the Pd-catalyzed Heck reaction for in-situ synthesis of conjugated oligomers. This process serves a great interest in understanding resistance evolution by utilizing the inhibitory activity of the synthesized conjugated oligomers. The approach allows for the in-situ combination of biological metabolism and CC coupling reactions, opening up new possibilities for the biosynthesis of unnatural molecules and enabling the in-situ regulation of the bioactivity of the obtained products.


Asunto(s)
Escherichia coli , Paladio , Escherichia coli/metabolismo , Catálisis , Fermentación
2.
J Chem Phys ; 160(24)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38916267

RESUMEN

We report the free energy barriers for the elementary reactions in the 2e- and 4e- oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e- pathway is clearly favored, while the barrier for the O-O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O-O dissociation channel, leading to the 4e- pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0-1.2 V region (RHE). In contrast, the O-O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.

3.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698399

RESUMEN

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Asunto(s)
Hidrogeles , Liposomas , Polietilenglicoles , Tripsina , Xantonas , Liposomas/química , Animales , Polietilenglicoles/química , Hidrogeles/química , Humanos , Tripsina/metabolismo , Tripsina/química , Femenino , Ratones , Línea Celular Tumoral , Ratones Endogámicos BALB C , Neoplasias de la Mama/tratamiento farmacológico , Proteolisis
4.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125592

RESUMEN

The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Regiones Promotoras Genéticas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Transducción de Señal , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Terminación de Péptidos , Transactivadores
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 437-442, 2024 Apr 10.
Artículo en Zh | MEDLINE | ID: mdl-38565509

RESUMEN

OBJECTIVE: To explore the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Spastic paraplegia type 5A (SPG5A). METHODS: A pedigree suspected for Hereditary spastic paraplegia (HSP) at Henan Children's Hospital on August 15 2022 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples were collected from members of the pedigree. Following extraction of genomic DNA, trio-WGS was carried out, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a 1-year-old boy, had presented with microcephaly, hairy face and dorsal side of distal extremities and trunk, intellectual and motor development delay, increased muscle tone of lower limbs, hyperreflexes of bilateral knee tendons, and positive pathological signs. His parents and sister both had normal phenotypes. Trio-WGS revealed that the child has harbored a homozygous c.1250G>A (p.Arg417His) variant of the CYP7B1 gene, for which his mother was heterozygous, the father and sister were of the wild type. The variant was determined to have originated from maternal uniparental disomy (UPD). The result of Sanger sequencing was in keeping with the that of trio-WGS. SPG5A due to maternal UPD of chromosome 8 was unreported previously. CONCLUSION: The child was diagnosed with SPG5A, a complex type of HSP, for which the homozygous c.1250G>A variant of the CYP7B1 gene derived from maternal UPD may be accountable.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Lactante , Masculino , China , Mutación , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética
6.
BMC Oral Health ; 24(1): 667, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849778

RESUMEN

BACKGROUND: This study investigated the effect of carbodiimide (EDC) combined with Clearfil SE self-etch adhesive on the shear bond strength (SBS), crosslinking degree, denaturation temperature, and enzyme activity of dentin in vitro. MATERIALS AND METHODS: Collected human sound third molars were randomly divided into different groups with or without EDC treatment (0.01-1 M). The specimens (n = 16)were stored for 24 h (immediate) or 12 months (aging) before testing the SBS. Fine dentin powder was obtained and treated with the same solutions. Then the crosslinking degree, denaturation temperature (Td), and enzyme activity were tested. Statistical analysis was performed using a one-way analysis of variance (ANOVA) to compare the differences of data between groups (α = 0.05). RESULTS: There was a significant drop in immediate SBS and more adhesive fracture of 1.0 M EDC group, while there were no significant differences among the other groups. SEM showed a homogeneous interface under all treatments. After 12 months of aging, the SBS significantly decreased. Less decreases of SBS in the 0.3 and 0.5 M groups were found. Due to thermal and enzymatical properties consideration, the 0.3 and 0.5 M treatments also showed higher cross-link degree and Td with lower enzyme activity. CONCLUSION: 0.3 and 0.5 M EDC may be favorable for delaying the aging of self-etch bond strength for 12 months. But it is still needed thoroughly study.


Asunto(s)
Carbodiimidas , Cementos de Resina , Resistencia al Corte , Humanos , Carbodiimidas/química , Cementos de Resina/química , Ensayo de Materiales , Dentina , Microscopía Electrónica de Rastreo , Recubrimientos Dentinarios/química , Análisis del Estrés Dental , Reactivos de Enlaces Cruzados/química , Recubrimiento Dental Adhesivo/métodos , Técnicas In Vitro , Grabado Ácido Dental/métodos , Tercer Molar , Temperatura , Factores de Tiempo , Propiedades de Superficie
7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 17-24, 2024 Feb 18.
Artículo en Zh | MEDLINE | ID: mdl-38318891

RESUMEN

OBJECTIVE: To explore the effects of different polymers on in vitro biomimetic mineralization of small intestinal submucosa (SIS) scaffolds, and to evaluate the physicochemical properties and biocompatibility of the SIS scaffolds. METHODS: The SIS scaffolds prepared by freeze-drying method were immersed in simulated body fluid (SBF), mineralized liquid containing polyacrylic acid (PAA) and mine-ralized liquid containing PAA and polyaspartic acid (PASP). After two weeks in the mineralized solution, the liquid was changed every other day. SBF@SIS, PAA@SIS, PAA/PASP@SIS scaffolds were obtained. The SIS scaffolds were used as control group to evaluate their physicochemical properties and biocompatibility. We observed the bulk morphology of the scaffolds in each group, analyzed the microscopic morphology by environment scanning electron microscopy and determined the porosity and pore size. We also analyzed the surface elements by energy dispersive X-ray spectroscopy (EDX), analyzed the structure of functional groups by Flourier transformed infrared spectroscopy (FTIR), detected the water absorption rate by using specific gravity method, and evaluated the compression strength by universal mechanical testing machine. The pro-cell proliferation effect of each group of scaffolds were evaluated by CCK-8 cell proliferation method. RESULTS: Under scanning electron microscopy, the scaffolds of each group showed a three-dimensional porous structure with suitable pore size and porosity, and crystal was observed in all the mineralized scaffolds of each group, in which the crystal deposition of PAA/PASP@SIS scaffolds was more regular. At the same time, the collagen fibers could be seen to thicken. EDX analysis showed that the characteristic peaks of Ca and P were found in the three groups of mineralized scaffolds, and the highest peaks were found in the PAA/PASP@SIS scaffolds. FTIR analysis proved that all the three groups of mineralized scaffolds were able to combine hydroxyapatite with SIS. All the scaffolds had good hydrophilicity. The compressive strength of the mineralized scaffold in the three groups was higher than that in the control group, and the best compressive strength was found in PAA/PASP@SIS scaffold. The scaffolds of all the groups could effectively adsorb proteins, and PAA/PASP@SIS group had the best adsorption capacity. In the CCK-8 cell proliferation experiment, the PAA/PASP@SIS scaffold showed the best ability to promote cell proliferation with the largest number of living cells observed. CONCLUSION: Compared with other mineralized scaffolds, PAA/PASP@SIS scaffolds prepared by mineralized solution containing both PAA and PASP have better physicochemical properties and biocompatibility and have potential applications in bone tissue engineering.


Asunto(s)
Polímeros , Andamios del Tejido , Andamios del Tejido/química , Polímeros/química , Biomimética , Sincalida , Ingeniería de Tejidos/métodos , Intestino Delgado , Porosidad
8.
Angew Chem Int Ed Engl ; : e202407992, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140436

RESUMEN

Modifying catalyst surface with small molecular-additives presents a promising avenue for enhancing electrocatalytic performance. However, challenges arise in preserving the molecular-additives and maximizing their tuning effect, particularly at high current-densities. Herein, we develop an effective strategy to preserve the molecular-additives on electrode surface by applying a thin protective layer. Taking 4-dimethylaminopyridine (DMAP) as an example of a molecular-additive, the hydrophobic protection layer on top of the DMAP-functionalized Cu-catalyst effectively prevents its leaching during CO2 electroreduction (CO2R). Consequently, the confined DMAP molecules substantially promote the CO2-to-multicarbon conversion at low overpotentials. For instance, at a potential as low as -0.47 V vs. reversible hydrogen electrode, the DMAP-functionalized Cu exhibits over 80% selectivity towards multi-carbon products, while the pristine Cu shows only ~35% selectivity for multi-carbon products. Notably, ethanol appears as the primary product on DMAP-functionalized Cu, with selectivity approaching 50% at a high current density of 400 mA cm-2. Detailed kinetic analysis, in-situ spectroscopies, and theoretical calculations indicate that DMAP-induced electron accumulations on surface Cu-sites decrease the reaction energy for C-C coupling. Additionally, the interactions between DMAP and oxygenated intermediates facilitate the ethanol formation pathway in CO2R. Overall, this study showcases an effective strategy to guide future endeavors involving molecular tuning effects.

9.
Theranostics ; 14(7): 2719-2735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773969

RESUMEN

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Asunto(s)
Bifidobacterium breve , Diferenciación Celular , Colitis , Indoles , Macrófagos , Probióticos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Bifidobacterium breve/metabolismo , Indoles/farmacología , Indoles/metabolismo , Humanos , Colitis/inducido químicamente , Colitis/microbiología , Colitis/complicaciones , Diferenciación Celular/efectos de los fármacos , Probióticos/farmacología , Probióticos/administración & dosificación , Modelos Animales de Enfermedad , Carcinogénesis/efectos de los fármacos , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/metabolismo , Ratones Endogámicos C57BL , Colon/microbiología , Colon/patología , Colon/metabolismo , Sulfato de Dextran , Masculino , Microbioma Gastrointestinal , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Azoximetano
10.
Front Immunol ; 15: 1370647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694511

RESUMEN

Background: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.


Asunto(s)
Células Endoteliales , Hígado , Mitofagia , Daño por Reperfusión , Humanos , Mitofagia/genética , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Hígado/patología , Perfilación de la Expresión Génica , Masculino , Redes Reguladoras de Genes , Transcriptoma , Femenino
11.
Eur J Pharmacol ; 975: 176656, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754536

RESUMEN

Cancer stem cells (CSCs) drive malignant tumor progression, recurrence, and metastasis with unique characteristics, including self-renewal and resistance to conventional treatments. Conventional differentiation inducers, although promising, have limited cytotoxicity and may inadvertently enhance CSC stemness. To address these challenges, ongoing efforts are dedicated to developing strategies that can effectively combine both cytotoxicity and differentiation-inducing effects. In this study, we introduce oridonin (Ori), a small molecule with dual differentiation-inducing and cytotoxicity properties capable of eliminating tumor CSCs. We isolated CSCs in B16F10 cells using the Hoechst side population method and assessed the differentiation effect of Ori. Ori's differentiation-inducing effect was further evaluated using human acute promyelocytic leukemia. The cytotoxic potential of Ori against MCF-7 and B16F10 cell lines was assessed through various methods. In vivo anti-tumor and anti-CSC efficacy of Ori was investigated using mouse melanoma and CSCs melanoma models. Safety evaluation included zebrafish embryotoxicity and mouse acute toxicity experiments. As a result, Ori effectively dismantles tumorspheres, inhibits proliferation, and reduces the expression of CSC-specific markers. It induces significant differentiation, especially in the case of NB4. Additionally, Ori upregulates TP53 expression, mitigates the hypoxic tumor microenvironment, suppresses stemness, and inhibits PD-L1 expression, prompting a robust anti-cancer immune response. Ori demonstrates pronounced cytotoxicity, inducing notable pro-apoptotic effects on B16F10 and MCF-7 cells, with specific triggering of mitochondrial apoptosis. Importantly, Ori maintains a commendable biosafety record. The dual-action prowess of Ori not only induces the differentiation of CSCs but also dispatches differentiated and residual tumor cells, effectively thwarting the relentless march of tumor progression.


Asunto(s)
Diferenciación Celular , Diterpenos de Tipo Kaurano , Células Madre Neoplásicas , Pez Cebra , Diterpenos de Tipo Kaurano/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Humanos , Diferenciación Celular/efectos de los fármacos , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Células MCF-7 , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Femenino
12.
Carbohydr Polym ; 330: 121814, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368097

RESUMEN

Hemicellulose is mainly distributed in the tightly packed S2 layer of the plant cell wall and the middle lamella. This rigid microstructure of wood and interactions among hemicellulose, lignin, and cellulose jointly restrict the separation and transformation of hemicellulose in the wood matrix. To address this issue, a method combined with microwave-expanding pretreatment (MEP) and microwave-assisted extraction (MAE) with a NaOH solution was carried out. We found that the MEP could effectively create new pathways for bagasse cells in mass transferring. More specifically, 195 % of the specific surface area (m2/g) with 193 % of the pores (>50 nm) increased after MEP; the SEM images also confirmed that the microstructure of bagasse was modified. MAE could considerably exfoliate hemicellulose from cellulose fiber and accelerate mass transfer. Additionally, we optimized MEP and MAE by using response surface methodology (RSM). The optimal parameters were 370 K, 3.7 min, 1081 W microwave power, and 9.9 wt% NH4HCO3 consumption for the MEP and 1100 W microwave power, 2.5 wt% NaOH concentration, 34.6 min reaction time for MAE, respectively. Moreover, molecular dynamics (MD) simulation suggests that NaOH could significantly lower the work needed to peel off the xylan chain from cellulose nanofibril.


Asunto(s)
Celulosa , Microondas , Polisacáridos , Hidróxido de Sodio , Celulosa/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-39141374

RESUMEN

Transition metal-nitrogen-carbon complexes, featuring single metal atoms embedded in a nitrogen-doped carbon matrix, emerge as promising alternatives to traditional platinum-based catalysts, offering cost-effectiveness, abundance, and enhanced catalytic performance. This work introduces a novel method for the etching and doping of zeolitic imidazolate frameworks (ZIFs) with transition metals, creating a uniform distribution of secondary metal centers on ZIF surfaces. By disrupting the crystalline symmetry of ZIFs through synthetic defect engineering, we gain access to their entire internal volume, creating multichannel pathways. The absorption of metal ions is theoretically simulated, demonstrating their thermodynamically spontaneous nature. The selective removal of defect channels under Lewis acidic conditions, induced by metal ion alcoholysis/hydrolysis, facilitates the introduction of metal atoms into ZIF cavities. The resulting single-atom catalyst, after pyrolysis, features a three-dimensional (3D) multichannel structure, high surface area, and uniformly dispersed metal atoms within the N-doped carbon matrix, establishing it as an exceptional catalyst for the oxygen reduction reaction (ORR). Our findings highlight the potential of using metal etching in defect-engineered metal-organic frameworks (MOFs) for single-atom catalyst preparation, paving the way for the next generation of high-performance, cost-effective ORR catalysts in sustainable energy systems.

14.
Int Immunopharmacol ; 137: 112480, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38885603

RESUMEN

OBJECTIVES: We aimed to explore the effects and mechanisms of action of dehydroepiandrosterone (DHEA) on immune evasion of oral squamous cell carcinoma (OSCC) to provide evidence for enhancing the effect of immunotherapy. MATERIALS AND METHODS: A xenograft mouse model and immunohistochemistry were used to reveal the patterns of tumor-infiltrating lymphocytes (TILs). The CAL27 and SCC VII cell lines were used for the in vitro study. Western blotting, qPCR, immunofluorescence, and flow cytometry were used to evaluate the expression of B7-H4. Recombinant mouse B7-H4 protein (rmB7-H4) and PG490, an inhibitor of NF-κB p65 were used for the "rescue study." Gain- and loss-of-function, luciferase reporter, and chromatin immunoprecipitation assays were performed to verify this mechanism. RESULTS: DHEA inhibited tumor growth in an OSCC xenograft mouse model, increased CD8 + cells, and decreased FOXP3 + cells in TILs. DHEA reduced the expression of B7-H4 in CAL27 and SCC VII cells RmB7-H4 reverses the effect of DHEA on tumor growth and TIL patterns. DHEA increased the expression of miR-15b-5p and activated its transcriptional factor NF-κB p65. Further experiments demonstrated that miR-15b-5p inhibited B7-H4 expression by binding to its 3'-UTR regions, and NF-κB p65 activated miR-15b transcription. PG490 reversed the effects of DHEA on tumor growth, antitumor immunity in the OSCC xenograft model, and the expression/phosphorylation of NF-κB p65, miR-15b-5p, and B7-H4. CONCLUSIONS: This study indicates that DHEA attenuates the immune escape of OSCC cells by inhibiting B7-H4 expression, providing new insights for cancer immunotherapy.


Asunto(s)
Carcinoma de Células Escamosas , Deshidroepiandrosterona , MicroARNs , Neoplasias de la Boca , Factor de Transcripción ReIA , Escape del Tumor , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Animales , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/tratamiento farmacológico , Humanos , Factor de Transcripción ReIA/metabolismo , Deshidroepiandrosterona/farmacología , Deshidroepiandrosterona/uso terapéutico , Escape del Tumor/efectos de los fármacos , Línea Celular Tumoral , Inhibidor 1 de la Activación de Células T con Dominio V-Set/genética , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo , Ratones , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos
15.
Nat Commun ; 15(1): 337, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184634

RESUMEN

Photocatalytic overall water splitting into hydrogen and oxygen is desirable for long-term renewable, sustainable and clean fuel production on earth. Metal sulfides are considered as ideal hydrogen-evolved photocatalysts, but their component homogeneity and typical sulfur instability cause an inert oxygen production, which remains a huge obstacle to overall water-splitting. Here, a distortion-evoked cation-site oxygen doping of ZnIn2S4 (D-O-ZIS) creates significant electronegativity differences between adjacent atomic sites, with S1 sites being electron-rich and S2 sites being electron-deficient in the local structure of S1-S2-O sites. The strong charge redistribution character activates stable oxygen reactions at S2 sites and avoids the common issue of sulfur instability in metal sulfide photocatalysis, while S1 sites favor the adsorption/desorption of hydrogen. Consequently, an overall water-splitting reaction has been realized in D-O-ZIS with a remarkable solar-to-hydrogen conversion efficiency of 0.57%, accompanying a ~ 91% retention rate after 120 h photocatalytic test. In this work, we inspire an universal design from electronegativity differences perspective to activate and stabilize metal sulfide photocatalysts for efficient overall water-splitting.

16.
Nat Commun ; 15(1): 260, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177119

RESUMEN

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

17.
Front Plant Sci ; 14: 1324974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259936

RESUMEN

Introduction: Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods: TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion: Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion: These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.

18.
ACS Appl Mater Interfaces ; 15(51): 59454-59462, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102993

RESUMEN

Atomically dispersed single-atom catalysts are intriguing catalysts in the field of electrocatalysis for nearly 100% exploitation of metal atoms. However, they are still far from practical usage due to the scaling relationship limit and metal loading limit. Generation of a diatomic complex would offer superior catalytic performance through the cooperation of two neighboring atoms as active sites. Herein, Fe/Co dual atomic sites embedded in a tube-on-plate hollow structure are designed and fabricated for an efficient electrochemical oxygen reduction reaction (ORR). The unique structure composed of ultrathin nanotube building blocks dramatically maximizes the surface area for copious active site exposure. Thanks to the synergetic interaction between Fe/Co pairs, the obtained FeCo/NC exhibits outstanding ORR activity and stability in alkaline media. Furthermore, density functional theory calculations have revealed that the remarkable activity is attributed to the electron-deficient Fe sites in FeCoN6. This work may pave the way for the innovative design of highly dispersed dual-site catalysts for broader applications in the realm of electrochemical catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA