Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(5): 1152-1163, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25981666

RESUMEN

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.


Asunto(s)
Acil-CoA Deshidrogenasa/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ácidos Grasos/metabolismo , Acil-CoA Deshidrogenasa/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
2.
Nat Immunol ; 18(11): 1207-1217, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28892469

RESUMEN

The tumor microenvironment confers profound resistance to anti-cancer immunotherapy. By targeting LIGHT, a member of the TNF superfamily of cytokines, to tumor vessels via a vascular targeting peptide (VTP), we developed a reagent with the dual ability to modulate the angiogenic vasculature and to induce tertiary lymphoid structures (TLSs). LIGHT-VTP triggered the influx of endogenous T cells into autochthonous or syngeneic tumors, which are resistant to immunotherapy. LIGHT-VTP in combination with checkpoint inhibition generated a large number of intratumoral effector and memory T cells with ensuing survival benefits, while the addition of anti-tumor vaccination achieved maximal therapeutic efficacy. Thus, the combination treatments stimulated the trafficking of pre-existing endogenous effector T cells as well as their intratumoral activation and were more successful than current immunotherapies, which fail due to tumor-intrinsic resistance mechanisms.


Asunto(s)
Inmunoterapia/métodos , Linfocitos/inmunología , Neoplasias/terapia , Neovascularización Patológica/terapia , Microambiente Tumoral/inmunología , Secuencia de Aminoácidos , Animales , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/farmacología , Resistencia a Antineoplásicos/inmunología , Quimioterapia Combinada , Linfocitos/metabolismo , Ratones Endogámicos C3H , Ratones Transgénicos , Neoplasias/irrigación sanguínea , Neoplasias/inmunología , Neovascularización Patológica/inmunología , Péptidos/administración & dosificación , Péptidos/genética , Péptidos/farmacología , Análisis de Supervivencia , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/química , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
3.
Nano Lett ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597670

RESUMEN

We report experimental and theoretical studies of MoTe2-MoSe2 heterobilayers with rigid moiré superlattices controlled by the twist angle. Using an effective continuum model that combines resonant interlayer electron tunneling with stacking-dependent moiré potentials, we identify the nature of moiré excitons and the dependence of their energies, oscillator strengths, and Landé g-factors on the twist angle. Within the same framework, we interpret distinct signatures of bound complexes among electrons and moiré excitons in nearly collinear heterostacks. Our work provides a fundamental understanding of hybrid moiré excitons and trions in MoTe2-MoSe2 heterobilayers and establishes the material system as a prime candidate for optical studies of correlated phenomena in moiré lattices.

4.
Funct Integr Genomics ; 24(2): 58, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489049

RESUMEN

Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Nucleares , Adenocarcinoma del Pulmón/genética , Apoptosis , Biología Computacional , Neoplasias Pulmonares/genética , ARNt Metiltransferasas
5.
Anal Chem ; 96(1): 292-300, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38141016

RESUMEN

Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Antibacterianos/farmacología , Oro , Calefacción , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , ADN/genética , ADN/análisis , Técnicas Biosensibles/métodos
6.
J Med Virol ; 96(3): e29528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501378

RESUMEN

The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/genética , Anticuerpos Monoclonales , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
7.
Phys Rev Lett ; 132(7): 076902, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427888

RESUMEN

We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.

8.
Exp Eye Res ; 243: 109907, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649019

RESUMEN

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.


Asunto(s)
Ritmo Circadiano , Ratones Endogámicos C57BL , Retina , Privación de Sueño , Transcriptoma , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/metabolismo , Privación de Sueño/genética , Ratones , Ritmo Circadiano/fisiología , Masculino , Retina/metabolismo , Retina/fisiopatología , Modelos Animales de Enfermedad , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Electrorretinografía , Regulación de la Expresión Génica , Enfermedad Crónica
9.
Bioorg Med Chem Lett ; 99: 129613, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224754

RESUMEN

A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 µM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.


Asunto(s)
Antineoplásicos , Isatina , Neoplasias Hepáticas , Humanos , Animales , Ratones , Línea Celular Tumoral , Isatina/química , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Proliferación Celular , Relación Estructura-Actividad , Estructura Molecular
10.
J Immunol ; 208(2): 429-443, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903642

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Inmunidad Celular , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
11.
Acta Pharmacol Sin ; 45(2): 391-404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803139

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers in the world. The therapeutic outlook for HCC patients has significantly improved with the advent and development of systematic and targeted therapies such as sorafenib and lenvatinib; however, the rise of drug resistance and the high mortality rate necessitate the continuous discovery of effective targeting agents. To discover novel anti-HCC compounds, we first constructed a deep learning-based chemical representation model to screen more than 6 million compounds in the ZINC15 drug-like library. We successfully identified LGOd1 as a novel anticancer agent with a characteristic levoglucosenone (LGO) scaffold. The mechanistic studies revealed that LGOd1 treatment leads to HCC cell death by interfering with cellular copper homeostasis, which is similar to a recently reported copper-dependent cell death named cuproptosis. While the prototypical cuproptosis is brought on by copper ionophore-induced copper overload, mechanistic studies indicated that LGOd1 does not act as a copper ionophore, but most likely by interacting with the copper chaperone protein CCS, thus LGOd1 represents a potentially new class of compounds with unique cuproptosis-inducing property. In summary, our findings highlight the critical role of bioavailable copper in the regulation of cell death and represent a novel route of cuproptosis induction.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Cobre , Neoplasias Hepáticas/tratamiento farmacológico , Ionóforos , Apoptosis
12.
J Nanobiotechnology ; 22(1): 333, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877492

RESUMEN

In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.


Asunto(s)
Tejido Adiposo , Apoptosis , Isquemia , MicroARNs , Animales , Ratones , Tejido Adiposo/citología , MicroARNs/metabolismo , Células Madre/citología , Células Madre/metabolismo , Estrés Oxidativo , Colgajos Quirúrgicos , Células Cultivadas , Ratones Endogámicos C57BL , Masculino , Supervivencia Celular , Neovascularización Fisiológica , Técnicas de Cultivo Tridimensional de Células/métodos
13.
Nano Lett ; 23(10): 4160-4166, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141148

RESUMEN

Vertical van der Waals heterostructures of semiconducting transition metal dichalcogenides realize moiré systems with rich correlated electron phases and moiré exciton phenomena. For material combinations with small lattice mismatch and twist angles as in MoSe2-WSe2, however, lattice reconstruction eliminates the canonical moiré pattern and instead gives rise to arrays of periodically reconstructed nanoscale domains and mesoscopically extended areas of one atomic registry. Here, we elucidate the role of atomic reconstruction in MoSe2-WSe2 heterostructures synthesized by chemical vapor deposition. With complementary imaging down to the atomic scale, simulations, and optical spectroscopy methods, we identify the coexistence of moiré-type cores and extended moiré-free regions in heterostacks with parallel and antiparallel alignment. Our work highlights the potential of chemical vapor deposition for applications requiring laterally extended heterosystems of one atomic registry or exciton-confining heterostack arrays.

14.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279208

RESUMEN

The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.


Asunto(s)
Aparato Lagrimal , Aparato Lagrimal/patología , Lágrimas/metabolismo , Linfocitos T , Linfocitos , ARN/metabolismo
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 331-334, 2024 Mar 10.
Artículo en Zh | MEDLINE | ID: mdl-38448024

RESUMEN

OBJECTIVE: To explore the genetic etiology of two patients with Gitelman syndrome (GS). METHODS: Two patients who had presented at the Linyi People's Hospital in January and June 2022 respectively were selected as the study subjects. Peripheral blood samples of them were collected and subjected to whole exome sequencing (WES). Electrolyte levels in their serum and urine were detected. Candidate variants were verified by Sanger sequencing. PyMOL software was used to predict the impact of the variants on the protein structure. RESULTS: Patient 1 was a 27-year-old female with decreased serum levels of sodium, potassium, chloride and magnesium, along with decreased urine chloride and calcium. WES revealed that she has harbored compound heterozygous variants of the SLC12A3 gene, namely c.1456G>A (p.D486N) and c.179C>T (p.T60M). The former was inherited from her mother and known to be pathogenic. Patient 2 was a 4-year-old male with lower serum sodium, chloride and magnesium levels, and his serum potassium level was found to be critically low. He was found to harbor compound heterozygous variants of c.602-16G>A and c.805_806insTTGGCGTGGTCTCGGTCA (p.V268_T269insIGVVSV) of the SLC12A3 gene, which were inherited from his mother and father, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics, both variants were predicted to be pathogenic (PVS1+PM2_Supporting+PP3; PVS1+PM2_Supporting+PM4). CONCLUSION: The above heterozygous variants of the SLC12A3 gene probably underlay the GS in these patients.


Asunto(s)
Síndrome de Gitelman , Humanos , Femenino , Masculino , Adulto , Preescolar , Síndrome de Gitelman/genética , Cloruros , Magnesio , Potasio , Sodio , Miembro 3 de la Familia de Transportadores de Soluto 12/genética
16.
Int Wound J ; 21(1): e14362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37605359

RESUMEN

The purpose of this study was to compare the reconstructive outcomes of soft-tissue defects around foot and ankle with vaccum sealing drainage (VSD) or induction membrane (IM) of cement formation and attempt to provide an optimal strategy for elderly patients. A retrospective review of all continuous patients with foot and ankle reconstruction using different flaps from October of 2016 and October of 2020 was performed. Based on the different way, the patients were divided into two groups: VSD group (n = 26) and IM group (n = 27). Outcomes were assessed according to the size of the defect, frequency of debridement procedures, hospitalization time, duration of healing, the healing rate, major amputation rate, functional outcomes and complications. Immunohistochemistry (IHC) detection of vascular endothelial growth factor (VEGF) was also be completed. We found that there was no difference in demographic characteristics, size of the defect, debridement times and functional outcomes between the two groups (p > 0.05); however, a significant difference in the wound healing time, hospitalization time and complications were noted between them(p < 0.05). The fresh granulation tissue of both groups showed abundant positive expression of VEGF. Thus, the VSD and IM are both available for foot and ankle reconstruction in elderly patients. However, the IM group offers short hospitalization time, duration of healing and lower frequency of postoperative complications. Thus, we advocate the IM for reconstruction of defects of the foot and ankle region in the elderly patients.


Asunto(s)
Tobillo , Traumatismos de los Tejidos Blandos , Humanos , Anciano , Tobillo/cirugía , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Drenaje , Extremidad Inferior/cirugía , Traumatismos de los Tejidos Blandos/cirugía , Resultado del Tratamiento , Trasplante de Piel/métodos
17.
J Environ Sci (China) ; 145: 164-179, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844317

RESUMEN

The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.


Asunto(s)
Microcistinas , Análisis de Secuencia de ARN , Microcistinas/toxicidad , Animales , Ratones , Hígado/efectos de los fármacos , Toxinas Marinas/toxicidad , Leucina , Hepatocitos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas
18.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403354

RESUMEN

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-sis , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/uso terapéutico , Transducción de Señal , Isquemia/tratamiento farmacológico , Miembro Posterior/metabolismo , ARN Mensajero/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
19.
Angew Chem Int Ed Engl ; : e202409163, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924334

RESUMEN

Photocatalytic nitrate reduction reaction (NitRR) is a promising route for environment remediation and sustainable ammonia synthesis. To design efficient photocatalysts, the recently emerged nanoarchitectonics approach holds great promise. Here, we report a nanohouse-like S-scheme heterjunction photocatalyst with high photocatalytic NitRR performance. The nano-house has a floor of plate-like metal organic framework-based photocatalyst (NH2-MIL-125), on which another photocatalyst Co(OH)2 nanosheet is grown while ZIF-8 hollow cages are also constructed as the surrounding wall/roof. Experimental and simulation results indicate that the positively charged, highly porous and hydrophobic ZIF-8 wall can modulate the environment in the nanohouse by (i) NO3- enrichment / NH4+ discharge and (ii) suppression of the competitive hydrogen evolution reaction. In combination with the enhanced electron-hole separation and strong redox capability in the NH2-MIL-125@Co(OH)2 S-scheme heterjunction confined in the nano-house, the designed photocatalyst delivers an ammonia yield of 2454.9 µmol g-1 h-1 and an apparent quantum yield of 8.02% at 400 nm in pure water. Our work provides new insights into the design principles of advanced photocatalytic NitRR photocatalyst.

20.
Exp Eye Res ; 234: 109573, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442219

RESUMEN

The lacrimal gland is essential for maintaining ocular surface health through the secretion of the aqueous layer of the tear film. It is therefore important to explore the intrinsic and extrinsic factors that affect the structure and function of the lacrimal gland and the mechanisms underlying them. With the prevalence of Westernized diets characterized by high sugar and fat content, the susceptibility to many diseases, including ocular diseases, is increased by inducing dysbiosis of the gut microbiome. Here, we found that the composition, abundance, and diversity of the gut microbiome was significantly altered in mice by drinking 15% high fructose water for one month, as determined by 16S rRNA sequencing. This was accompanied by a significant increase in lipid deposition and inflammatory cell infiltration in the extraorbital lacrimal glands (ELGs) of mice. Transcriptome analysis based on bulk RNA-sequencing revealed abnormal activation of some of several metabolic and immune-related pathways. In addition, the secretory response to stimulation with the cholinergic receptor agonist pilocarpine was significantly reduced. However, when the composition and diversity of the gut microbiome of high fructose intake (HFI)-treated mice were improved by transplanting feces from normal young healthy mice, the pathological alterations in ELG structure, inflammatory cell infiltration, secretory function and transcriptome analysis described above were significantly reversed compared to age-matched control mice. In conclusion, our data suggest that prolonged HFI may cause pathological damage to the structure and function of the ELG through the induction of gut dysbiosis. Restoration of intestinal dysbiosis in HFI-treated mice by fecal transplantation has a potential role in ameliorating these pathological impairments.


Asunto(s)
Microbioma Gastrointestinal , Aparato Lagrimal , Ratones , Animales , Aparato Lagrimal/metabolismo , Disbiosis/metabolismo , ARN Ribosómico 16S/genética , Fructosa/toxicidad , Fructosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA