Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurogenet ; 30(1): 32-41, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27276194

RESUMEN

Orexin signaling, known to modulate arousal and vigilance, is also involved in nociception as orexin neurons project to regions of the brain and spinal cord involved in pain processing, and the administration of orexin peptides can alter pain response in a wide range of preclinical models. Pharmacological treatment with the potent, selective and structurally distinct dual orexin receptor antagonists (ORAs) DORA-12 and DORA-2 significantly reduced pain responses during both phases I and II of the mouse formalin pain model and significantly reversed hyperalgesia in the rat complete Freund's adjuvant pain model, respectively. Significant antinociceptive effects of DORA-12 in the formalin model were also observed in orexin 1 receptor (OX1R) knockout mice, but not orexin 2 receptor (OX2R) or OX1R/OX2R double knockout mice. Mechanical hypersensitivity was significantly reduced with a series of structurally distinct, potent and highly selective ORAs (DORA-2, DORA-12 and DORA-22) in the rat spinal nerve ligation (SNL) injury model of neuropathic pain. Selective pharmacological targeting of OX2R with 2-SORA-7 also reduced pain responses in acute inflammatory (complete Freund's adjuvant) and neuropathic (SNL) rat pain models. Performance on the rotarod test of psychomotor performance and baseline thermal sensitivity were not affected in OX1R/OX2R knockout mice or ORA-treated mice, indicating that the observed pain-reducing effects were not due to sedation or motor deficits. These findings indicate that ORAs have pain-reducing effects across a number of acute and chronic neuropathic preclinical mouse and rat pain models. Further studies on the potential pain-relieving effects of orexin receptor antagonism are warranted.


Asunto(s)
Analgésicos/farmacología , Antagonistas de los Receptores de Orexina/farmacología , Animales , Modelos Animales de Enfermedad , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/fisiopatología , Ratas , Ratas Sprague-Dawley
2.
Mol Pain ; 4: 48, 2008 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-18954467

RESUMEN

BACKGROUND: Safe and effective treatment for chronic inflammatory and neuropathic pain remains a key unmet medical need for many patients. The recent discovery and description of the transient receptor potential family of receptors including TRPV1 and TRPA1 has provided a number of potential new therapeutic targets for treating chronic pain. Recent reports have suggested that TRPA1 may play an important role in acute formalin and CFA induced pain. The current study was designed to further explore the therapeutic potential of pharmacological TRPA1 antagonism to treat inflammatory and neuropathic pain. RESULTS: The in vitro potencies of HC-030031 versus cinnamaldehyde or allyl isothiocyanate (AITC or Mustard oil)-induced TRPA1 activation were 4.9 +/- 0.1 and 7.5 +/- 0.2 microM respectively (IC50). These findings were similar to the previously reported IC50 of 6.2 microM against AITC activation of TRPA1 1. In the rat, oral administration of HC-030031 reduced AITC-induced nocifensive behaviors at a dose of 100 mg/kg. Moreover, oral HC-030031 (100 mg/kg) significantly reversed mechanical hypersensitivity in the more chronic models of Complete Freunds Adjuvant (CFA)-induced inflammatory pain and the spinal nerve ligation model of neuropathic pain. CONCLUSION: Using oral administration of the selective TRPA1 antagonist HC-030031, our results demonstrated that TRPA1 plays an important role in the mechanisms responsible for mechanical hypersensitivity observed in inflammatory and neuropathic pain models. These findings suggested that TRPA1 antagonism may be a suitable new approach for the development of a potent and selective therapeutic agent to treat both inflammatory and neuropathic pain.


Asunto(s)
Acetanilidas/farmacología , Analgésicos/farmacología , Canales de Calcio/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Neuralgia/tratamiento farmacológico , Dolor/tratamiento farmacológico , Purinas/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Ancirinas , Línea Celular , Modelos Animales de Enfermedad , Humanos , Inflamación , Masculino , Neuralgia/etiología , Neuralgia/patología , Dolor/etiología , Dolor/patología , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA