Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937844

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Asunto(s)
Aldo-Ceto Reductasas , Curcumina , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Curcumina/farmacología , Curcumina/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Células Hep G2 , Aldo-Ceto Reductasas/metabolismo , Ratas , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Rodanina/análogos & derivados , Tiazolidinas
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894840

RESUMEN

Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Senescencia Celular/fisiología , Aterosclerosis/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2781-2791, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282938

RESUMEN

Rosae Radix et Rhizoma is a herbal medicine in a variety of famous Chinese patent medicines, while the quality standard for this medicine remains to be developed due to the insufficient research on the quality of Rosae Radix et Rhizoma from different sources. Therefore, this study comprehensively analyzed the components in Rosae Radix et Rhizoma of different sources from the aspects of extract, component category content, identification based on thin-lay chromatography, active component content determination, and fingerprint, so as to improve the quality control. The results showed that the content of chemical components varied in the samples of different sources, while there was little difference in the chemical composition among the samples. The content of components in the roots of Rosa laevigata was higher than that in the other two species, and the content of components in the roots was higher than that in the stems. The fingerprints of triterpenoids and non-triterpenoids were established, and the content of five main triterpenoids including multiflorin, rosamultin, myrianthic acid, rosolic acid, and tormentic acid in Rosae Radix et Rhizoma was determined. The results were consistent with those of major component categories. In conclusion, the quality of Rosae Radix et Rhizoma is associated with the plant species, producing area, and medicinal parts. The method established in this study lays a foundation for improving the quality standard of Rosae Radix et Rhizoma and provides data support for the rational use of the stem.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Medicamentos Herbarios Chinos/química , Rizoma/química , Raíces de Plantas/química , Control de Calidad
4.
J Neuroinflammation ; 19(1): 186, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35836182

RESUMEN

BACKGROUND: Depression is a recurrent and devastating mental disease that is highly prevalent worldwide. Prolonged exposure to stressful events or a stressful environment is detrimental to mental health. In recent years, an inflammatory hypothesis has been implicated in the pathogenesis of stress-induced depression. However, less attention has been given to the initial phases, when a series of stress reactions and immune responses are initiated. Peripheral CD4+ T cells have been reported as the major contributors to the occurrence of mental disorders. Chronic stress exposure-evoked release of cytokines can promote the differentiation of peripheral CD4+ cells into various phenotypes. Among them, Th17 cells have attracted much attention due to their high pathogenic potential in central nervous system (CNS) diseases. Thus, we intended to determine the crucial role of CD4+ Th17 cells in the development of specific subtypes of depression and unravel the underpinnings of their pathogenetic effect. METHODS: In the present research, a daily 6-h restraint stress paradigm was employed in rats for 28 successive days to mimic the repeated mild and predictable, but inevitable environmental stress in our daily lives. Then, depressive-like symptoms, brain-blood barrier (BBB) permeability, neuroinflammation, and the differentiation and functional changes of CD4+ cells were investigated. RESULTS: We noticed that restrained rats showed significant depressive-like symptoms, concomitant BBB disruption and neuroinflammation in the dorsal striatum (DS). We further observed a time-dependent increase in thymus- and spleen-derived naïve CD4+ T cells, as well as the aggregation of inflammatory Th17 cells in the DS during the period of chronic restraint stress (CRS) exposure. Moreover, increased Th17-derived cytokines in the brain can further impair the BBB integrity, thus allowing more immune cells and cytokines to gain easy access to the CNS. Our findings suggested that, through a complex cascade of events, peripheral immune responses were propagated to the CNS, and gradually exacerbated depressive-like symptoms. Furthermore, inhibiting the differentiation and function of CD4+ T cells with SR1001 in the early stages of CRS exposure ameliorated CRS-induced depressive-like behaviour and the inflammatory response. CONCLUSIONS: Our data demonstrated that inflammatory Th17 cells were pivotal in accelerating the onset and exacerbation of depressive symptoms in CRS-exposed rats. This subtype of CD4+ T cells may be a promising therapeutic target for the early treatment of stress-induced depression.


Asunto(s)
Depresión , Células Th17 , Animales , Encéfalo , Citocinas , Depresión/etiología , Humanos , Ratas , Restricción Física , Células TH1
5.
J Cell Physiol ; 236(11): 7853-7873, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018609

RESUMEN

Epidemiological studies have shown that plasma HDL-C levels are closely related to the risk of prostate cancer, breast cancer, and other malignancies. As one of the key carriers of cholesterol regulation, high-density lipoprotein (HDL) plays an important role in tumorigenesis and cancer development through anti-inflammation, antioxidation, immune-modulation, and mediating cholesterol transportation in cancer cells and noncancer cells. In addition, the occurrence and progression of cancer are closely related to the alteration of the tumor microenvironment (TME). Cancer cells synthesize and secrete a variety of cytokines and other factors to promote the reprogramming of surrounding cells and shape the microenvironment suitable for cancer survival. By analyzing the effect of HDL on the infiltrating immune cells in the TME, as well as the relationship between HDL and tumor-associated angiogenesis, it is suggested that a moderate increase in the level of HDL in vivo with consequent improvement of the function of HDL in the TME and induction of intracellular cholesterol efflux may be a promising strategy for cancer therapy.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antiinflamatorios/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/uso terapéutico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Microambiente Tumoral , Animales , HDL-Colesterol/metabolismo , Humanos , Hipolipemiantes/uso terapéutico , Mediadores de Inflamación/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Recombinantes/uso terapéutico , Microambiente Tumoral/inmunología , Regulación hacia Arriba
6.
Acta Pharmacol Sin ; 42(9): 1472-1485, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33303989

RESUMEN

Celastrol is a triterpene derived from the traditional Chinese medicine Tripterygium wilfordii Hook f, which displays potential anticancer activity. In the present study, we investigated the anticancer effects of celastrol against clear cell renal cell carcinoma (ccRCC) and the underlying mechanisms. Using Cancer Genome Atlas (TCGA) database and genotype-tissue expression (GTEx) database we conducted a bioinformatics analysis, which showed that the mRNA levels of liver-X receptors α (LXRα) and ATP-binding cassette transporter A1 (ABCA1) in ccRCC tissues were significantly lower than those in adjacent normal tissues. This result was confirmed by immunoblotting analysis of 4 ccRCC clinical specimens, which showed that the protein expression of LXRα and ABCA1 was downregulated. Similar results were obtained in a panel of ccRCC cell lines (786-O, A498, SN12C, and OS-RC-2). In 786-O and SN12C cells, treatment with celastrol (0.25-2.0 µM) concentration-dependently inhibited the cell proliferation, migration, and invasion as well as the epithelial-mesenchymal transition (EMT) process. Furthermore, we demonstrated that celastrol inhibited the invasion of 786-O cells through reducing lipid accumulation; celastrol concentration-dependently promoted autophagy to reduce lipid storage. Moreover, we revealed that celastrol dramatically activated LXRα signaling, and degraded lipid droplets by inducing lipophagy in 786-O cells. Finally, celastrol promoted cholesterol efflux from 786-O cells via ABCA1. In high-fat diet-promoted ccRCC cell line 786-O xenograft model, administration of celastrol (0.25, 0.5, 1.0 mg·kg-1·d-1, for 4 weeks, i.p.) dose-dependently inhibited the tumor growth with upregulated LXRα and ABCA1 protein in tumor tissue. In conclusion, this study reveals that celastrol triggers lipophagy in ccRCC by activating LXRα, promotes ABCA1-mediated cholesterol efflux, suppresses EMT progress, and ultimately inhibits cell proliferation, migration, and invasion as well as tumor growth. Thus, our study provides evidence that celastrol can be used as a lipid metabolism-based anticancer therapeutic approach.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Autofagia/efectos de los fármacos , Carcinoma de Células Renales/metabolismo , Receptores X del Hígado/metabolismo , Triterpenos Pentacíclicos/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos
7.
Pharmacology ; 106(1-2): 29-36, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32694250

RESUMEN

INTRODUCTION: Homeostasis of cholesterol is crucial for cellular function, and dysregulated cholesterol biosynthesis is a metabolic event that can lead to hepatic and cardiovascular abnormalities. OBJECTIVE: The aim of this study was to investigate the effects and mechanisms of domain-associated protein (Daxx) and androgen receptor (AR) on intracellular cholesterol synthesis. METHODS: HepG2 cells were transfected with pCDNA3.1(+)/Daxx plasmid or treated with testosterone propionate to observe the effects of Daxx and AR on intracellular cholesterol levels. Co-immunoprecipitation experiments were performed to identify the interaction between Daxx and AR and to explore the regulatory effects of this interaction on cholesterol synthesis. RESULTS: Our experiments showed that AR promoted cholesterol synthesis and accumulation by activating sterol-regulatory element-binding protein isoform 2. AR-induced cholesterol synthesis was inhibited by Daxx; however, the expression of AR was not affected. Further studies demonstrated the existence of direct binding between Daxx and AR and this interaction was required to suppress AR activity. CONCLUSIONS: The Daxx-mediated antagonism of AR depicts a more complete picture as to how Daxx regulates intracellular cholesterol level and provides a new target for treatment of atherosclerosis.


Asunto(s)
Colesterol/biosíntesis , Proteínas Co-Represoras/metabolismo , Chaperonas Moleculares/metabolismo , Receptores Androgénicos/metabolismo , Compuestos Azo , Colesterol/análisis , Cromatografía Líquida de Alta Presión , Colorimetría , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inmunoprecipitación , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
8.
Molecules ; 26(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771018

RESUMEN

Aspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of Caenorhabditis elegans (C. elegans) worms. Our results demonstrated that CA extended the lifespan of worms in a dose-dependent manner and reached its highest anti-aging effect at the concentration of 20 µM. In addition, CA reduced the deposition of lipofuscin or "age pigment" without affecting the reproductivity of worms. CA also caused a rightward shift of C. elegans lifespan curves in the presence of paraquat-induced (5 mM) oxidative stress or 37 °C acute heat shock. Additionally, CA treatment decreased the reactive oxygen species (ROS) level in C. elegans and increased the expression of downstream genes superoxide dismutase (sod)-3, glutathione S-transferase (gst)-4, heat shock protein (hsp)-16.2, and catalase-1 (ctl-1). Notably, CA treatment resulted in nuclear translocation of the DAF-16 transcription factor, which is known to stimulate the expression of SOD-3, GST-4, HSP-16, and CTL-1. CA did not produce a longevity effect in daf-16 mutants. In sum, our data indicate that CA delayed the aging of C. elegans without affecting reproductivity, and this effect may be mediated by its activation of DAF-16 and subsequent expression of antioxidative genes, such as sod-3 and gst-4. Our study suggests that novel anti-aging drugs may be developed by combining two individual drugs.


Asunto(s)
Aspirina/farmacología , Caenorhabditis elegans/efectos de los fármacos , Curcumina/farmacología , Longevidad/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Caenorhabditis elegans/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 46(7): 1813-1821, 2021 Apr.
Artículo en Zh | MEDLINE | ID: mdl-33982486

RESUMEN

Prunella vulgaris(PV) is an edible and traditional medicinal herb which has a wide range application in fighting inflammation and oxidative stress, and protecting liver. Now it has been used to treat various types of liver diseases and has significant clinical efficacy. This study aims to investigate the effects of PV on ethanol-induced oxidative stress injury in rats and its metabolic mechanism. The rats were divided into control group, model group, PV group, and VC group. The liver protection of PV was identified by measuring pharmacological indexes such as antioxidant and anti-inflammatory activity. The metabolic mechanism of long-term ethanol exposure and the metabolic regulation mechanism of PV treatment were studied by LS-MS metabonomics. The pharmacological investigation indicated that ethanol could significantly decrease the contents of SOD, GSH-Px, CAT and other antioxidant enzymes in liver and increase the content of MDA. At the same time, PV could significantly reduce the contents of inflammatory factors(TNF-α, IL-6 and IL-1ß) and liver function markers(ALT, AST, ALP) in serum. What's more, long-term ethanol exposure could significantly cause liver injury, while PV could protect liver. Metabolomics based on multiple statistical analyses showed that long-term ethanol exposure could cause significant metabolic disorder, and fatty acids, phospholipids, carnitines and sterols were the main biomarkers. Meanwhile, pathway analysis and enrichment analysis showed that the ß oxidation of branched fatty acids was the main influencing pathway. Also, PV could improve metabolic disorder of liver injury induced by ethanol, and amino acids, fatty acids, and phospholi-pids were the main biomarkers in PV treatment. Metabolic pathway analysis showed that PV mainly regulated metabolic disorder of ethanol-induced liver injury through phenylalanine, tyrosine and tryptophan biosynthetic pathways. This study could provide a new perspective on the hepatoprotective effect of natural medicines, such as PV.


Asunto(s)
Prunella , Animales , Antioxidantes/metabolismo , Etanol/toxicidad , Hígado/metabolismo , Metabolómica , Estrés Oxidativo , Ratas
10.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6353-6365, 2021 Dec.
Artículo en Zh | MEDLINE | ID: mdl-34994127

RESUMEN

In this paper, the newly isolated tannins were sorted after a review of the literature concerning tannins in recent 10 years, and their research progress was summarized in terms of extraction, isolation, pharmacological activity and metabolism. Hydrolysable tannins and condensed tannins are the main structural types. Modern research shows that tannins have many pharmacological effects, such as bacteriostasis, antioxidation, antitumor, antivirus and blood glucose reduction, and have broad development prospects. They are usually extracted by water, ethanol and acetone and isolated and purified by macroporous resin and gel column chromatography. The packings commonly adopted for the column chromatography mainly included Sephadex LH-20, Diaion HP-20, MCI-gel CHP-20 and Toyopearl HW-40. Modern analytical techniques such as nuclear magnetic resonance spectroscopy(NMR), fast atom bombardment mass spectrometry(FAB-MS) and circular dichroism(CD) are generally used for the structural identification of tannins. Howe-ver, their isolation, purification and structural identification are still challenging. It is necessary to use a variety of high-throughput screening methods to explore their pharmacological activities and to explore the material basis responsible for their functions through experiments in vivo.


Asunto(s)
Proantocianidinas , Taninos , China , Taninos Hidrolizables , Medicina Tradicional China
11.
Biochem Biophys Res Commun ; 532(3): 466-474, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32892949

RESUMEN

The uptake of modified low-density lipoprotein (LDL) and the accumulation of lipid droplets induce the formation of vascular smooth muscle cells (VSMCs)-derived foam cells, thereby promoting the development and maturation of plaques and accelerating the progression of atherosclerosis. Celastrol is a quinine methide triterpenoid isolated from the root bark of traditional Chinese herb Tripterygium wilfordii. It possesses various biological properties, including anti-obesity, cardiovascular protection, anti-inflammation, etc. In the present study, we found that celastrol significantly reduced lipid accumulation induced by oxidized LDL (ox-LDL) in VSMCs. Mechanistically, celastrol up-regulated adenosine triphosphate-binding cassette transporter A1 (ABCA1) expression through activating liver X receptor α (LXRα) expression, which contributed to inhibit lipid accumulation in VSMCs. Meanwhile, celastrol decreased lipid accumulation by triggering autophagy in VSMCs. Therefore, these findings supported celastrol as a potentially effective agent for the prevention and therapy of atherosclerosis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Triterpenos/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Autofagia/efectos de los fármacos , Células Cultivadas , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Triterpenos Pentacíclicos , Transducción de Señal/efectos de los fármacos
12.
J Membr Biol ; 253(2): 101-108, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32140737

RESUMEN

As a member of the kinesin-3 family, kinesin family member 16B (KIF16B) has a characteristic PhoX homology (PX) domain that binds to membranes containing phosphatidylinositol-3-phosphate (PI(3)P) and moves along microtubule filaments to the plus end via a process regulated by coiled coils in the stalk region in various cell types. The physiological function of KIF16B supports the transport of intracellular cargo and the formation of endosomal tubules. Ras-related protein (Rab) coordinates many steps of membrane transport and are involved in the regulation of KIF16B-mediated vesicle trafficking. Data obtained from clinical research suggest that KIF16B has a potential effect on the disease processes in intellectual disability, abnormal lipid metabolism, and tumor brain metastasis. In this review, we summarize recent advances in the structural and physiological characteristics of KIF16B as well as diseases associated with KIF16B disorders, and speculating its role as a potential adaptor for intracellular cholesterol trafficking.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Susceptibilidad a Enfermedades , Humanos , Espacio Intracelular/metabolismo , Unión Proteica , Transporte de Proteínas , Relación Estructura-Actividad
13.
Hepatology ; 69(6): 2489-2501, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30672601

RESUMEN

Aldo-keto reductase family 1 member B10 (AKR1B10) is a secretory protein overexpressed in hepatocellular carcinoma (HCC). We aimed to evaluate AKR1B10 as a serum marker for detection of HCC. Herein, we conducted a cohort study that consecutively enrolled 1,244 participants from three independent hospitals, including HCC, healthy controls (HCs), benign liver tumors (BLTs), chronic hepatitis B (CHB), and liver cirrhosis (LC). Serum AKR1B10 was tested by time-resolved fluorescent assays. Data were plotted for receiver operating characteristic (ROC) curve analyses. Alpha-fetoprotein (AFP) was analyzed for comparison. An exploratory discovery cohort demonstrated that serum AKR1B10 increased in patients with HCC (1,567.3 ± 292.6 pg/mL; n = 69) compared with HCs (85.7 ± 10.9 pg/mL; n = 66; P < 0.0001). A training cohort of 519 participants yielded an optimal diagnostic cutoff of serum AKR1B10 at 267.9 pg/mL. When ROC curve was plotted for HCC versus all controls (HC + BLT + CHB + LC), serum AKR1B10 had diagnostic parameters of the area under the curve (AUC) 0.896, sensitivity 72.7%, and specificity 95.7%, which were better than AFP with AUC 0.816, sensitivity 65.1%, and specificity 88.9%. Impressively, AKR1B10 showed promising diagnostic potential in early-stage HCC and AFP-negative HCC. Combination of AKR1B10 with AFP increased diagnostic accuracy for HCC compared with AKR1B10 or AFP alone. A validation cohort of 522 participants confirmed these findings. An independent cohort of 68 patients with HCC who were followed up showed that serum AKR1B10 dramatically decreased 1 day after operation and was nearly back to normal 3 days after operation. Conclusion: AKR1B10 is a potent serum marker for detection of HCC and early-stage HCC, with better diagnostic performance than AFP.


Asunto(s)
Miembro B10 de la Familia 1 de las Aldo-Ceto Reductasas/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Adulto , Biomarcadores de Tumor , Biopsia con Aguja , Carcinoma Hepatocelular/diagnóstico , Estudios de Casos y Controles , China , Femenino , Hospitales Universitarios , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/diagnóstico , Masculino , Persona de Mediana Edad , Curva ROC , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Cell Commun Signal ; 18(1): 119, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746850

RESUMEN

Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.


Asunto(s)
Exosomas/metabolismo , Metabolismo de los Lípidos , Animales , Humanos , Lípidos/biosíntesis , Modelos Biológicos
15.
J Sep Sci ; 43(24): 4379-4389, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33030303

RESUMEN

Nowadays, the root of Rose cymosa Tratt. (Rosaceae) is widely used in clinic as one of the sources of Chinese herb medicine Jinyinggen. However, only few studies have been done on its chemical composition and quality control. In this study, 27 monomeric compounds were obtained from the ethanol extract of the roots of R. cymosa Tratt., including two undescribed triterpenes, one of which contains a distinctive contracted five-membered A-ring ursane-type skeleton and the other is a common ursane-type tritepene. Then, triterpenoids, the main components of the R. cymosa root, were qualitatively and quantitatively analyzed by thin-layer chromatography and high-performance liquid chromatography methods. Thin-layer chromatography can identify seven triterpenoids in R. cymosa Tratt. spontaneously. For the high-performance liquid chromatography fingerprint, total of 16 chromatographic peaks were selected as the common peaks of 20 batches of samples, ten of which were identified by reference substances. At the same chromatographic condition, five abundant triterpenoids were quantitatively assayed. R. cymose, as one of the origins of Jinyinggen, was similar to R. laevigata in triterpenoids compounds, which demonstrated that both of them could be used in the clinical medication. These work also laid a foundation for the further research and development of triterpenoids in R. cymosa root.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Extractos Vegetales/análisis , Raíces de Plantas/química , Rosaceae/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Conformación Molecular , Control de Calidad , Estereoisomerismo
16.
J Cell Physiol ; 234(12): 21436-21449, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31054175

RESUMEN

Obesity is well-known as the second factor for tumorigenesis after smoking and is bound up with the malignant progression of several kinds of cancers, including esophageal cancer, liver cancer, colorectal cancer, kidney cancer, and ovarian cancer. The increased morbidity and mortality of obesity-related cancer are mostly attributed to dysfunctional adipose tissue. The possible mechanisms connecting dysfunctional adipose tissue to high cancer risk mainly focus on chronic inflammation, obesity-related microenvironment, adipokine secretion disorder, and browning of adipose tissue, and so forth. The stromal vascular cells in adipose tissue trigger chronic inflammation through secreting inflammatory factors and promote cancer cell proliferation. Hypertrophic adipose tissues lead to metabolic disorders of adipocytes, such as abnormal levels of adipokines that mediate cancer progression and metastasis. Cancer patients often show adipose tissue browning and cancerous cachexia in an advanced stage, which lead to unsatisfied chemotherapy effect and poor prognosis. However, increasing evidence has shown that adipose tissue may display quite opposite effects in cancer development. Therefore, the interaction between cancers and adipose tissue exert a vital role in mediates adipose tissue dysfunction and further leads to cancer progression. In conclusion, targeting the dysfunction of adipose tissue provides a promising strategy for cancer prevention and therapy.


Asunto(s)
Tejido Adiposo/patología , Carcinogénesis/patología , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Inflamación/patología
17.
Biochem Biophys Res Commun ; 514(1): 92-97, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31023527

RESUMEN

Hepatic autophagy plays an important role in lipid metabolism, especially in nonalcoholic fatty liver disease. The relationship between Oleate acid and autophagy is not yet clear. In this work, using mouse epithelial cell hepa1c1c7, we investigated the role of Oleate acid on autophagy and explored its potential mechanisms. The exposure of hepatic cells to Oleate acid resulted in a significant reduction of LC3 accumulation together with enhancement of p62 protein expression and the mRNA levels of ATG7 and BECN1 were reduced as well. Mechanistically, the inhibitory effects of Oleate acid on rapamycin-induced autophagy were completely blocked by treatment with dominant negative p38α and p38 inhibitor SB203580. Furthermore, ATF-2, downstream of p38, was activated by Oleate treatment. Oleate treatment also inhibited the ULK1 promoter and decreased the ULK1 mRNA level. Our data therefore suggest that Oleate activated the ATF-2 via p38 kinase which inhibited the ULK1 via binding to ULK1 promoter, and eventually the rapamycin-induced autophagy was suppressed.


Asunto(s)
Autofagia , Hepatocitos/citología , Ácido Oléico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Línea Celular , Regulación hacia Abajo , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Ratones , Regiones Promotoras Genéticas
18.
Pharmacology ; 103(5-6): 282-290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30808828

RESUMEN

BACKGROUND/AIMS: Hypoxia can induce cell injury in cardiomyocytes and further lead to cardiovascular diseases. Genistein (Gen), the predominant isoflavone found in soy products, has shown protective effects on cardiovascular system. The aim of the present study was to investigate the cardioprotective effect of Gen against chemical hypoxia-induced injury. METHODS: Cobalt chloride (CoCl2) was administrated to trigger chemical hypoxia in H9c2 cardiomyocytes. Cell proliferation was detected by using MTT assay. The expression level of hypoxia-related proteins (hypoxia-inducible factor [HIF]-1α and Notch-1) and apoptosis-related proteins (B cell lymphoma [Bcl]-2, Bax, and caspase-3) were evaluated by Western blot analysis. RESULTS: In response to hypoxia, cell viability was reduced dramatically, whereas the expression of HIF-1α was upregulated. Hypoxia also induced cardiomyocytes apoptosis by reducing the ratio of Bcl-2/Bax and increasing expression of caspase-3. Interestingly, Gen attenuated CoCl2-induced cell death and suppressed HIF-1α expression, as well as upregulated the expression of Notch-1. Furthermore, Gen could antagonize CoCl2-induced apoptosis through upregulating Bcl-2/Bax ratio and inhibiting caspase-3 expression. CONCLUSIONS: Gen prevents chemical hypoxia-induced cell apoptosis through inhibition of the mitochondrial apoptotic pathway, exerting protective effects on H9c2 cardiomyocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Genisteína/farmacología , Miocitos Cardíacos/efectos de los fármacos , Animales , Western Blotting , Cardiotónicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobalto/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Miocitos Cardíacos/patología , Ratas , Regulación hacia Arriba/efectos de los fármacos
19.
Molecules ; 24(22)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752145

RESUMEN

Curcumin is an anticancer agent, but adverse effects and low bioavailability are its main drawbacks, which drives efforts in chemical modifications of curcumin. This study evaluated antiproliferative activity and cancer cell selectivity of a curcumin derivative, curcumin nicotinate (CN), in which two niacin molecules were introduced. Our data showed that CN effectively inhibited proliferation and clonogenic growth of colon (HCT116), breast (MCF-7) and nasopharyngeal (CNE2, 5-8F and 6-10B) cancer cells with IC50 at 27.7 µM, 73.4 µM, 64.7 µM, 46.3 µM, and 31.2 µM, respectively. In cancer cells, CN induced apoptosis and cell cycle arrest at G2/M phase through a p53-mediated mechanism, where p53 was activated, p21 and pro-apoptotic proteins Bid and Bak were upregulated, and PARP was cleaved. In non-transformed human mammary epithelial cells MCF10A, CN at 50 µM had no cytotoxicity and p53 was not activated, but curcumin at 12.5 µM activated p53 and p21 and inhibited MCF10A cell growth. These data suggest that CN inhibits cell growth and proliferation through p53-mediated apoptosis and cell cycle arrest with cancer cell selectivity.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Curcumina/análogos & derivados , Niacina/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Células MCF-7 , Niacina/farmacología
20.
Molecules ; 24(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035334

RESUMEN

As part of our continual efforts to exploit 'Tujia Ethnomedicine' for their pharmacophoric functionalities, we herein investigated Kadsura heteroclita collected from a deep Wulin mountain area in northern Hunan province. The current study resulted in the isolation of three new sesquiterpenes: 6α,9α,15-trihydroxycadinan-4-en-3-one (1), (+)-3,11,12-trihydroxycalamenene (2), (-)-3,10,11,12-tetrahydroxy-calamenene (3), along with four known sesquiterpenes (4-7), and a cytochalasin H (8). Their chemical structures were elucidated by 1D-, and 2D-NMR spectroscopy, and HRESI-MS, CD spectrometry. The antioxidant, and cytotoxic activities of the compounds were evaluated. Compound 8 exhibited a strong antioxidant effect with an IC50 value of 3.67 µM on isolated human polymorphonuclear cells or neutrophils.


Asunto(s)
Kadsura/química , Extractos Vegetales/química , Tallos de la Planta/química , Sesquiterpenos/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Sesquiterpenos Policíclicos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA