Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 128(11): 2258-2266, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-35067232

RESUMEN

We examined whether physical activity (PA) explains the association between dietary inflammatory potential and osteoarthritis (OA) in the elderly. A total of 1249 elderly people (≥65 years) were eligible for this study from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016. The semi-quantitative Food Frequency Questionnaire (FFQ) and Global PA Questionnaire (GPAQ) were used to evaluate the diet and PA of the elderly, respectively. The multivariable logistic regression model estimated the odds ratio (OR) and 95% confidence interval (CI) between Energy-adjusted Dietary Inflammatory Index (E-DII) and OA. The interaction of E-DII and PA on depressive events was tested, and the mediation analysis of PA was performed. The average E-DII in this study was +0.68 (SE 0.08), and the score ranges from -5.32 (most anti-inflammatory) to +4.26 (most pro-inflammatory). In comparison with the first quartile, the elderly from the second quartile (OR: 1.16 [95% CI: 1.06, 1.68]) to the fourth quartile (OR: 1.64 [95% CI: 1.13, 2.37]) had a higher risk of OA before adjustment for PA. An interaction was observed between E-DII and PA in terms of the risk of OA (PInteraction < 0.001). The whole related part was mediated by PA (20.08%). Our findings indicated that the higher pro-inflammatory potential of diet was associated with a higher risk of OA, and low PA was an important part of the mediating factor in the relationship between systemic low-grade dietary inflammation and the risk of OA.


Asunto(s)
Inflamación , Osteoartritis , Humanos , Anciano , Encuestas Nutricionales , Dieta , Ejercicio Físico , Factores de Riesgo
2.
J Cell Mol Med ; 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037306

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease which lacks effective medical treatment due to ill-defined molecular mechanisms underlying the pathology. Inflammation is a key factor that induces and aggravates OA. Therefore, the current study aims to explore roles of the dysregulated long non-coding RNAs in the pro-inflammatory cytokine IL-1ß-mediated catabolic effects in cartilage tissue and chondrocytes. We identified RP11-364P22.2 as dysregulated in OA patient-derived cartilage tissues and highly responsive to IL-1ß stimulus. RNA pull-down coupled with mass spectrometry demonstrated that RP11-364P22.2 physically binds to activating transcription factor 3 (ATF3) and thus increases the protein stability and facilitates its nuclear translocation. Loss- and gain-of-function assays indicated that the interaction between RP11-364P22.2 and ATF3 is indispensable for the detrimental effects of IL-1ß including growth inhibition, apoptosis induction as well as degradation of the key chondrocyte structural proteins of type II collage and Aggrecan and synthesis of the extracellular matrix-degrading enzyme MMP13 in chondrocytes. In vivo, depletion of the RP11-364P22.2 effector ATF3 drastically prevented OA development in the rats with surgical destabilization of the medial meniscus (DMM). These results highlight the important roles of lncRNAs in the pathogenesis of OA and indicate the RP11-364P22.2/ATF3 regulatory axis as a potential therapeutic target of inflammation-induced OA.

3.
Acta Biomater ; 160: 297-310, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773884

RESUMEN

Aseptic loosening of the prosthesis is a severe complication after joint replacement. It is of great practical significance and social value to discover the prevention and treatment strategies for this condition. Exosomes from urine-derived stem cells (Exos) have great potential in promoting bone repair, reconstruction, and regulating bone metabolism. However, they are easily eliminated by macrophages and incapable of targeting the osteolysis zone. In this study, based on macrophage "homing" into periprosthetic osteolysis region and cell membrane encapsulating nanotechnology, exosomes from urine-derived stem cells were encapsulated with macrophage membrane (MM) to prevent periprosthetic osteolysis. We found that macrophage membrane encapsulated urine-derived stem cell-derived exosomes (MM-Exos) can be targeted delivery to the osteolysis zone and enhance the therapeutic effectiveness of Exos, which alleviated wear particles-induced calvarial osteolysis. Furthermore, MM-Exos could provide immunological camouflage and allow the Exos to avoid phagocytosis by macrophages and stimulate cellular uptake by bone marrow-derived stem cells (BMSCs). Therefore, we demonstrated the unique ability of the macrophage membrane as a targeted transport of exosomes from urine-derived stem cells for the prevention and treatment of periprosthetic osteolysis. These biomimetic nanoparticles provided a new therapeutic exosome delivery system for preventing wear particles-induced osteolysis. STATEMENT OF SIGNIFICANCE: Macrophage membrane encapsulated urine-derived stem cell-derived exosomes (MM-Exos) can be targeted delivery to the osteolysis zone and enhance the therapeutic effect of Exos on peri­prosthetic osteolysis prevention. MM-Exos could allow the Exos to avoid phagocytosis by macrophages and promote the uptake of Exos by BMSCs.


Asunto(s)
Exosomas , Osteólisis , Humanos , Osteólisis/inducido químicamente , Células Madre , Exosomas/metabolismo , Membrana Celular , Macrófagos
4.
Injury ; 53(3): 868-877, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34785083

RESUMEN

PURPOSE: The purpose of this study was to determine the effects of polymethylmetnacrylate (PMMA) spacer loaded with different concentrations of vancomycin on the proliferative, osteogenic, and angiogenic capacity of the induced membrane. METHODS: Varying concentrations of vancomycin (0, 1, 2, 4, 6, 8, and 10 g) were fully mixed with bone cement powder (40 g), resulting in seven experimental groups. Hollow cylindrical PMMA spacers (10 mm height, 3 mm external diameter, and 0.8 mm internal diameter) were formed by a mold and submerged in phosphate-buffered saline for antibiotic release by spectrophotometry. Eighty-four New Zealand white rabbits were evenly randomized into seven groups, and segmental radius shaft defects (10 mm) were created. Defects were filled with cylindrical PMMA spacers containing different vancomycin concentrations, and subsequently underwent intramedullary fixation with a retrograde Kirschner's wire. Tissue toxicity was assessed and the proliferative, osteogenic, and angiogenic capacity of induced membranes were qualitatively analyzed by immunohistochemistry and real-time PCR. RESULTS: No obvious toxicity was observed in the animal model. Alizarin red s staining and qualitative detection of type I collagen, CD31, Ki67, and STRO-1 by immunohistochemistry revealed an obvious decrease in the percentage of positively stained cells and in osteogenic capacity when the concentration of vancomycin was more than 6 g per cement dose. Quantitation of gene expression related to osteogenesis (Col1a, Alp, and Runx2), vascularization (Vegf, Tgfb1, and vWF), and proliferation (Oct4 and Stro-1) by real-time PCR revealed slight increases in the expression of selected genes at low vancomycin concentrations (1-4 g per cement dose), and relatively lower gene expression when the concentration of vancomycin was more than 6 g per cement dose. CONCLUSION: PMMA spacers loaded with relatively low concentrations of vancomycin (1-4 g per cement dose) did not interfere with the proliferative, osteogenic, and angiogenic capacity of induced membranes, and even promoted their capacity. In contrast, spacers loaded with relatively high concentrations of vancomycin (6-10 g per cement dose) had negative effects on osteoblast viability, angiogenesis, and proliferation.


Asunto(s)
Polimetil Metacrilato , Vancomicina , Animales , Antibacterianos/farmacología , Cementos para Huesos/farmacología , Modelos Animales de Enfermedad , Polimetil Metacrilato/farmacología , Conejos , Vancomicina/farmacología
5.
Sci Rep ; 12(1): 4255, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277575

RESUMEN

Whether antibiotics should be included remains greatly debated in Masquelet technique. This study intended to determine the effect of polymethyl methacrylate (PMMA) spacer loaded with different vancomycin concentrations on bone defect repair. Hollow cylindrical spacers consisting of PMMA and varying vancomycin concentrations (0, 1, 2, 4, 6, 8, and 10 g) were prepared. Critical bone defects of rabbits were created at the radial shaft, and spacers were implanted and subsequently intramedullary fixed with retrograde Kirschner's wires (n = 4 for each vancomycin concentration). After 4 weeks, the induced membranes were opened and cancellous allografts were implanted into the defects. Eight weeks post-operatively, the results of X-ray, histology, and micro-CT revealed that some cortical bone was formed to bridge the gap and the bone marrow cavity was formed over time. Quantitatively, there was more new bone formation in the groups with a relatively lower vancomycin concentration (1-4 g) compared with that in the groups with a higher vancomycin concentration (6-10 g). Our findings suggested that PMMA spacers loaded with relatively lower vancomycin concentrations (1-4 g) did not interfere with new bone formation, whereas spacers loaded with relatively higher vancomycin concentrations (6-10 g) had negative effects on bone formation.


Asunto(s)
Polimetil Metacrilato , Vancomicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cementos para Huesos/farmacología , Regeneración Ósea , Polimetil Metacrilato/farmacología , Conejos , Microtomografía por Rayos X
6.
Front Cell Dev Biol ; 9: 778941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35756079

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Dysregulated autophagy is a major cause of OA. However, the underlying mechanism is unclear. Here, we found that the expression of element-binding protein (CREB) was downregulated in both cartilage tissues of OA patients and mouse OA model. In tert-butyl hydroperoxide solution-treated chondrocytes, increased apoptosis and autophagic blockage were attenuated by CREB overexpression. Mechanically, MiR-373 directly targeted the 3'UTR of methyltransferase-like 3 (METTL3) and led to its downregulation. METTL3 epigenetically suppressed TFEB. The upregulation of miR-373 by CREB overexpression induced the release of TFEB from METTL3 and restored the autophagy activity of chondrocytes. Taken together, our study showed that CREB alleviates OA injury through regulating the expression of miR-373, which directly targeted METTL3, and finally relieved TFEB from METTL3-mediated epigenetic suppression. The CREB/miR-373/METTL3/TFEB axis may be used as a potential target for the treatment of OA.

7.
Int J Nanomedicine ; 16: 7479-7494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34785895

RESUMEN

PURPOSE: Wear debris particle-induced periprosthetic osteolysis is a severe complication of total joint replacement that results in aseptic loosening and subsequent arthroplasty failure. No effective therapeutic agents or drugs have been approved to prevent or treat osteolysis; thus, revision surgery is often needed. Extracellular vesicles (EVs) are vital nanosized regulators of intercellular communication that can be directly applied to promote tissue repair and regeneration. In this study, we assessed the therapeutic potential of EVs from human urine-derived stem cells (USCs) (USC-EVs) in preventing ultrahigh-molecular-weight polyethylene (UHMWPE) particle-induced osteolysis. METHODS: USCs were characterized by measuring induced multipotent differentiation and flow cytometry. USC-EVs were isolated and characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and Western blotting. RAW264.7 cells and bone marrow mesenchymal stem cells (BMSCs) were cultured with USC-EVs to verify osteoclast differentiation and osteoblast formation, respectively, in vitro. The effects of USC-EVs were investigated on a UHMWPE particle-induced murine calvarial osteolysis model by assessing bone mass, the inflammatory reaction, and osteoblast and osteoclast formation. RESULTS: USCs differentiated into osteogenic, adipogenic and chondrogenic cells in vitro and were positive for CD44, CD73, CD29 and CD90 but negative for CD34 and CD45. USC-EVs exhibited a cup-like morphology with a double-layered membrane structure and were positive for CD63 and TSG101 and negative for calnexin. In vitro, USC-EVs promoted the osteogenic differentiation of BMSCs and reduced proinflammatory factor production and osteoclastic activity in RAW264.7 cells. In vivo, local injection of USC-EVs around the central sites of the calvaria decreased inflammatory cytokine generation and osteolysis compared with the control groups and significantly increased bone formation. CONCLUSION: Based on our findings, USC-EVs prevent UHMWPE particle-induced osteolysis by decreasing inflammation, suppressing bone resorption and promoting bone formation.


Asunto(s)
Vesículas Extracelulares , Osteólisis , Animales , Humanos , Ratones , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente , Polietileno , Células Madre
8.
Peptides ; 99: 108-114, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248696

RESUMEN

Lycosin-I, a spider peptide isolated from the venom of the spider Lycosa singoriensis, has anti-bacteria and anti-cancer properties in organisms. However, cardiovascular effects of Lycosin-I have not been studied. In this study, we investigated for the first time the vasodilator and hypotensive effects of Lycosin-I and the possible mechanisms, in order to develop a promising treatment for hypertension-related diseases. For in vitro experiments, thoracic aortas were isolated, and divided into two groups, endothelium-intact and endothelium-denuded aortic rings. Lycosin-I induced a remarkable dose-dependent relaxation in endothelium-intact aortic rings pre-treated with phenylephrine (p < 0.05), while it showed no obvious vasodilator effects in endothelium-denuded aortic rings (p > 0.05). The vasodilator effects of Lycosin-I were significantly weakened by a nitric oxide synthase (NOS) inhibitor, L-NAME (p < 0.001) and a selective inhibitor of nitric oxide (NO)-sensitive soluble guanylate cyclase (sGC), ODQ (p < 0.05), respectively. The levels of endothelial nitric oxide synthase (eNOS) phosphorylation and the NO production were significantly higher in human umbilical vascular endothelial cells pre-cultured with Lycosin-I than the control (p < 0.001), determined via western blot analysis and ozone-chemiluminescence technology. For in vivo experiments, arterial and venous catheters were inserted for mean arterial pressure (MAP) recording and drug administration in anaesthetized spontaneously hypertensive rats. Lycosin-I caused a transient drop of MAP 2 min after the administration compared with the control (p < 0.001). In conclusion, Lycosin-I has the potential to be an anti-hypertensive drug by endothelium-dependent vasodilatation, in which eNOS and NO-sensitive sGC are two main involved factors.


Asunto(s)
Antihipertensivos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Aorta Torácica/metabolismo , Proteínas de Artrópodos/farmacología , Hipotensión/inducido químicamente , Venenos de Araña/farmacología , Arañas/química , Vasodilatación/efectos de los fármacos , Vasodilatadores/química , Vasodilatadores/farmacología , Animales , Antihipertensivos/química , Péptidos Catiónicos Antimicrobianos/química , Aorta Torácica/patología , Proteínas de Artrópodos/química , Hipotensión/metabolismo , Hipotensión/patología , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Venenos de Araña/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA