Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(15): 4095-4112.e21, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885650

RESUMEN

The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.


Asunto(s)
Metabolómica , Poliaminas , Humanos , Animales , Poliaminas/metabolismo , Ratones , Bacteriemia/microbiología , Bacteriemia/metabolismo , Bacteriemia/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/metabolismo , Femenino
2.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790300

RESUMEN

The growth of antimicrobial resistance (AMR) has highlighted an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe bacterial infections profoundly alter host metabolism, prior studies have largely ignored alterations in microbial metabolism in this context. Performing metabolomics on patient and mouse plasma samples, we identify elevated levels of bacterially-derived N-acetylputrescine during gram-negative bloodstream infections (BSI), with higher levels associated with worse clinical outcomes. We discover that SpeG is the bacterial enzyme responsible for acetylating putrescine and show that blocking its activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity enhances bacterial membrane permeability and results in increased intracellular accumulation of antibiotics, allowing us to overcome AMR of clinical isolates both in culture and in vivo. This study highlights how studying pathogen metabolism in the natural context of infection can reveal new therapeutic strategies for addressing challenging infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA