Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Genomics ; 23(1): 225, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317738

RESUMEN

BACKGROUND: The ability of animals and their microbiomes to adapt to starvation and then restore homeostasis after refeeding is fundamental to their continued survival and symbiosis. The intestine is the primary site of nutrient absorption and microbiome interaction, however our understanding of intestinal adaptations to starvation and refeeding remains limited. Here we used RNA sequencing and 16S rRNA gene sequencing to uncover changes in the intestinal transcriptome and microbiome of zebrafish subjected to long-term starvation and refeeding compared to continuously fed controls. RESULTS: Starvation over 21 days led to increased diversity and altered composition in the intestinal microbiome compared to fed controls, including relative increases in Vibrio and reductions in Plesiomonas bacteria. Starvation also led to significant alterations in host gene expression in the intestine, with distinct pathways affected at early and late stages of starvation. This included increases in the expression of ribosome biogenesis genes early in starvation, followed by decreased expression of genes involved in antiviral immunity and lipid transport at later stages. These effects of starvation on the host transcriptome and microbiome were almost completely restored within 3 days after refeeding. Comparison with published datasets identified host genes responsive to starvation as well as high-fat feeding or microbiome colonization, and predicted host transcription factors that may be involved in starvation response. CONCLUSIONS: Long-term starvation induces progressive changes in microbiome composition and host gene expression in the zebrafish intestine, and these changes are rapidly reversed after refeeding. Our identification of bacterial taxa, host genes and host pathways involved in this response provides a framework for future investigation of the physiological and ecological mechanisms underlying intestinal adaptations to food restriction.


Asunto(s)
Microbiota , Transcriptoma , Animales , Intestinos/microbiología , ARN Ribosómico 16S , Pez Cebra/genética
2.
Genome Res ; 27(7): 1195-1206, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28385711

RESUMEN

Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.


Asunto(s)
Microbioma Gastrointestinal , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/biosíntesis , Enfermedades Inflamatorias del Intestino , Proteínas de Pez Cebra/biosíntesis , Pez Cebra , Animales , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Especificidad de la Especie , Pez Cebra/metabolismo , Pez Cebra/microbiología
3.
PLoS Biol ; 15(8): e2002054, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28850571

RESUMEN

The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology.


Asunto(s)
Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , ARN Mensajero/metabolismo , Smegmamorpha/metabolismo , Pez Cebra/metabolismo , Animales , California , Colon/citología , Colon/crecimiento & desarrollo , Colon/metabolismo , Duodeno/citología , Duodeno/crecimiento & desarrollo , Duodeno/metabolismo , Femenino , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria , Genómica/métodos , Humanos , Íleon/citología , Íleon/crecimiento & desarrollo , Íleon/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Yeyuno/citología , Yeyuno/crecimiento & desarrollo , Yeyuno/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Especificidad de Órganos , Ríos , Smegmamorpha/crecimiento & desarrollo , Especificidad de la Especie , Pez Cebra/crecimiento & desarrollo
4.
Chem Senses ; 44(8): 615-630, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31403159

RESUMEN

Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.


Asunto(s)
Microbiota/fisiología , Proteínas del Tejido Nervioso/genética , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Proteínas Represoras/genética , Olfato/genética , Animales , Línea Celular , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/microbiología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/microbiología , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Proteínas Represoras/metabolismo , Simbiosis/fisiología , Pez Cebra
5.
Nature ; 484(7393): 251-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22498630

RESUMEN

Dynamic access to genetic information is central to organismal development and environmental response. Consequently, genomic processes must be regulated by mechanisms that alter genome function relatively rapidly. Conventional chromatin immunoprecipitation (ChIP) experiments measure transcription factor occupancy, but give no indication of kinetics and are poor predictors of transcription factor function at a given locus. To measure transcription-factor-binding dynamics across the genome, we performed competition ChIP (refs 6, 7) with a sequence-specific Saccharomyces cerevisiae transcription factor, Rap1 (ref. 8). Rap1-binding dynamics and Rap1 occupancy were only weakly correlated (R(2) = 0.14), but binding dynamics were more strongly linked to function than occupancy. Long Rap1 residence was coupled to transcriptional activation, whereas fast binding turnover, which we refer to as 'treadmilling', was linked to low transcriptional output. Thus, DNA-binding events that seem identical by conventional ChIP may have different underlying modes of interaction that lead to opposing functional outcomes. We propose that transcription factor binding turnover is a major point of regulation in determining the functional consequences of transcription factor binding, and is mediated mainly by control of competition between transcription factors and nucleosomes. Our model predicts a clutch-like mechanism that rapidly engages a treadmilling transcription factor into a stable binding state, or vice versa, to modulate transcription factor function.


Asunto(s)
ADN de Hongos/metabolismo , Genoma Fúngico , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Inmunoprecipitación de Cromatina , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/clasificación , Complejo Shelterina , Factores de Tiempo
6.
Genome Res ; 24(9): 1504-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24963153

RESUMEN

Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin. We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Mucosa Intestinal/metabolismo , Microbiota , Transcripción Genética , Animales , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
7.
Genetics ; 222(4)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36218393

RESUMEN

Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Mucosa Intestinal , Proteínas de Pez Cebra , Pez Cebra , Animales , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/fisiología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Intestinos/embriología , Intestinos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
8.
Cell Mol Gastroenterol Hepatol ; 14(2): 465-493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35533983

RESUMEN

BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.


Asunto(s)
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Duodeno/metabolismo , Duodeno/microbiología , Ácidos Grasos/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lípidos , Ratones
9.
Nat Rev Gastroenterol Hepatol ; 18(1): 7-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33024279

RESUMEN

The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.


Asunto(s)
Diferenciación Celular/genética , Microambiente Celular/fisiología , Microbioma Gastrointestinal , Mucosa Intestinal/fisiología , Animales , Diferenciación Celular/fisiología , Microambiente Celular/genética , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Intestinos/microbiología , Intestinos/fisiología , Ratones , Modelos Animales , Nutrigenómica , Fenómenos Fisiológicos de la Nutrición/genética , Fenómenos Fisiológicos de la Nutrición/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología , Pez Cebra
10.
Sci Adv ; 7(30)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301599

RESUMEN

Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.


Asunto(s)
Ácidos y Sales Biliares , Pez Cebra , Animales , Ácidos y Sales Biliares/metabolismo , Intestinos , Hígado/metabolismo , Mamíferos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
11.
Cell Host Microbe ; 29(2): 179-196.e9, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33352109

RESUMEN

The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.


Asunto(s)
Edwardsiella tarda/metabolismo , Sistema Nervioso Entérico/metabolismo , Células Enteroendocrinas/fisiología , Mucosa Intestinal/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Animales Modificados Genéticamente , Neuronas Colinérgicas/metabolismo , Sistema Nervioso Entérico/citología , Motilidad Gastrointestinal/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/inervación , Proteínas Proto-Oncogénicas c-ret/genética , Serotonina/metabolismo , Transducción de Señal , Triptófano/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
12.
Dev Cell ; 51(1): 7-20.e6, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31474562

RESUMEN

The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.


Asunto(s)
Proteínas en la Dieta/metabolismo , Enterocitos/metabolismo , Absorción Intestinal , Intestinos/embriología , Lisosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Íleon/embriología , Íleon/metabolismo , Kwashiorkor/metabolismo , Ligandos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Receptores de Superficie Celular/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
13.
Nat Protoc ; 8(7): 1337-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23764940

RESUMEN

Competition chromatin immunoprecipitation (competition ChIP) enables experimenters to measure protein-DNA dynamics at a single locus or across the entire genome, depending on the detection method. Competition ChIP relies on a cell containing two copies of a single DNA-associated factor, with each copy of the factor differentially epitope tagged. One of the copies is expressed constitutively and the second is induced as a competitor. The ratio of isoforms associated with discrete genomic locations is detected by ChIP-on-chip (ChIP-chip) or ChIP-sequencing (ChIP-seq). The rate at which the resident isoform of the protein is replaced by the competitor at each binding location enables the calculation of residence time for that factor at each site of interaction genome wide. Here we provide a detailed protocol for designing and performing competition ChIP experiments in Saccharomyces cerevisiae, which takes ∼5 d to complete (not including strain production and characterizations, which may take as long as 6 months). Included in this protocol are guidelines for downstream bioinformatic analysis to extract residence times throughout the genome.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , ADN/metabolismo , Proteínas/análisis , Proteínas/metabolismo , Sitios de Unión , ADN/análisis , Epítopos , Genoma , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/métodos
14.
Science ; 340(6129): 190-5, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23470731

RESUMEN

RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.


Asunto(s)
Guanosina/metabolismo , Chaperonas Moleculares/metabolismo , Virus de la Leucemia Murina de Moloney/metabolismo , Proteínas de la Nucleocápside/metabolismo , ARN Viral/química , Secuencia de Bases , Dimerización , Guanosina/química , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Inosina/química , Inosina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Virus de la Leucemia Murina de Moloney/genética , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/química , Unión Proteica , ARN Viral/metabolismo
15.
PLoS One ; 4(3): e4886, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19295910

RESUMEN

In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this "cryptic" transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution. We find that suppression of cryptic transcription occurs independent of gene length or transcriptional frequency. Our conclusions differ with those reported previously because we obtained a higher-resolution dataset, we accounted for the fact that gene length and transcriptional frequency are not independent variables, and we accounted for several ascertainment biases that make cryptic transcription easier to detect in long, infrequently transcribed genes. These new results and conclusions have implications for many commonly used genomic analysis approaches, and for the evolution of high-fidelity RNA polymerase II transcriptional initiation in eukaryotes.


Asunto(s)
Histona Desacetilasas/metabolismo , Metiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Algoritmos , Histona Desacetilasas/genética , Metiltransferasas/genética , Análisis por Micromatrices , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA