Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 55: 83-94, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24602863

RESUMEN

Extremely acidic and saline groundwater occurs naturally in south-western Australia. Discharge of this water to surface waters has increased following extensive clearing of native vegetation for agriculture and is likely to have negative environmental impacts. The use of passive treatment systems to manage the acidic discharge and its impacts is complicated by the region's semi-arid climate with hot dry summers and resulting periods of no flow. This study evaluates the performance of a pilot-scale compost bioreactor treating extremely acidic and saline drainage under semi-arid climatic conditions over a period of 2.5 years. The bioreactor's substrate consisted of municipal waste organics (MWO) mixed with 10 wt% recycled limestone. After the start-up phase the compost bioreactor raised the pH from ≤3.7 to ≥7 and produced net alkaline outflow for 126 days. The bioreactor removed up to 28 g/m(2)/d CaCO3 equivalent of acidity and acidity removal was found to be load dependent during the first and third year. Extended drying over summer combined with high salinity caused the formation of a salt-clay surface layer on top of the substrate, which was both beneficial and detrimental for bioreactor performance. The surface layer prevented the dehydration of the substrate and ensured it remained waterlogged when the water level in the bioreactor fell below the substrate surface in summer. However, when flow resumed the salt-clay layer acted as a barrier between the water and substrate decreasing performance efficiency. Performance increased again when the surface layer was broken up indicating that the negative climatic impacts can be managed. Based on substrate analysis after 1.5 years of operation, limestone dissolution was found to be the dominant acidity removal process contributing up to 78-91% of alkalinity generation, while bacterial sulfate reduction produced at least 9-22% of the total alkalinity. The substrate might last up to five years before the limestone is exhausted and would need to be replenished. The MWO substrate was found to release metals (Zn, Cu, Pb, Ni and Cr) and cannot be recommended for use in passive treatment systems unless the risk of metal release is addressed.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua/metabolismo , Ácidos , Clima Desértico , Monitoreo del Ambiente , Agua Subterránea/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA