Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 35: 229-253, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446063

RESUMEN

The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.


Asunto(s)
Alergia e Inmunología , Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Biología Sintética , Linfocitos T/inmunología , Animales , Ingeniería Genética , Humanos , Activación de Linfocitos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/genética , Linfocitos T/trasplante
2.
Cell ; 172(4): 638-640, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425483

RESUMEN

Many processes controlling cell growth and death are well characterized for individual cell lineages, but how ensembles of different cell types in a tissue regulate collective size and composition remains unclear. In this issue of Cell, Zhou et al. employ experiments and theory to uncover design principles of tissue homeostasis arising from cross-talk between fibroblasts and macrophages.


Asunto(s)
Homeostasis , Macrófagos , Linaje de la Célula , Fenómenos Fisiológicos Celulares , Fibroblastos
3.
Cell ; 168(4): 724-740, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28187291

RESUMEN

Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.


Asunto(s)
Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología , Animales , Antígenos CD19/análisis , Ingeniería Celular/métodos , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Medicina de Precisión , Receptores de Antígenos de Linfocitos T/inmunología , Biología Sintética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral
4.
Cell ; 164(4): 770-9, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26830879

RESUMEN

T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/metabolismo , Animales , Antígenos CD19/metabolismo , Antígenos de Superficie/inmunología , Efecto Espectador , Comunicación Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/metabolismo , Humanos , Células Jurkat , Activación de Linfocitos , Mesotelina , Ratones , Receptores Notch/metabolismo
5.
Cell ; 164(4): 780-91, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26830878

RESUMEN

The Notch protein is one of the most mechanistically direct transmembrane receptors-the intracellular domain contains a transcriptional regulator that is released from the membrane when engagement of the cognate extracellular ligand induces intramembrane proteolysis. We find that chimeric forms of Notch, in which both the extracellular sensor module and the intracellular transcriptional module are replaced with heterologous protein domains, can serve as a general platform for generating novel cell-cell contact signaling pathways. Synthetic Notch (synNotch) pathways can drive user-defined functional responses in diverse mammalian cell types. Because individual synNotch pathways do not share common signaling intermediates, the pathways are functionally orthogonal. Thus, multiple synNotch receptors can be used in the same cell to achieve combinatorial integration of environmental cues, including Boolean response programs, multi-cellular signaling cascades, and self-organized cellular patterns. SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues.


Asunto(s)
Ingeniería Celular , Receptores Notch/química , Transducción de Señal , Biología Sintética/métodos , Animales , Línea Celular , Perros , Humanos , Ratones , Neuronas/metabolismo , Receptores Notch/metabolismo , Transcripción Genética
7.
Cell ; 167(2): 419-432.e16, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693353

RESUMEN

Redirecting T cells to attack cancer using engineered chimeric receptors provides powerful new therapeutic capabilities. However, the effectiveness of therapeutic T cells is constrained by the endogenous T cell response: certain facets of natural response programs can be toxic, whereas other responses, such as the ability to overcome tumor immunosuppression, are absent. Thus, the efficacy and safety of therapeutic cells could be improved if we could custom sculpt immune cell responses. Synthetic Notch (synNotch) receptors induce transcriptional activation in response to recognition of user-specified antigens. We show that synNotch receptors can be used to sculpt custom response programs in primary T cells: they can drive a la carte cytokine secretion profiles, biased T cell differentiation, and local delivery of non-native therapeutic payloads, such as antibodies, in response to antigen. SynNotch T cells can thus be used as a general platform to recognize and remodel local microenvironments associated with diverse diseases.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ingeniería Celular , Neoplasias/terapia , Receptores Artificiales/inmunología , Receptores Notch/inmunología , Anticuerpos/inmunología , Línea Celular Tumoral , Citocinas/inmunología , Citotoxicidad Inmunológica , Humanos , Inmunoterapia/métodos , Activación de Linfocitos , Receptores Artificiales/genética , Receptores Notch/genética , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Células TH1/inmunología , Transcripción Genética , Microambiente Tumoral
8.
Cell ; 160(1-2): 339-50, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25533786

RESUMEN

Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multigene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications, including rewiring cell fates or engineering metabolic pathways.


Asunto(s)
Sistemas CRISPR-Cas , Expresión Génica , Técnicas Genéticas , Células HEK293 , Humanos , Ingeniería Metabólica , ARN Guía de Kinetoplastida/genética , Saccharomyces cerevisiae/genética , Streptococcus pyogenes/genética
9.
Cell ; 158(5): 973-975, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171399

RESUMEN

Cells often receive signals to proliferate, but how population density is controlled is unclear. Hart et al. now show that a single secreted molecule that instructs both proliferation and death in T cells establishes a bistable response: the population is driven to either extinction or to a homeostatically defined density.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Interleucina-2/metabolismo , Modelos Biológicos , Transducción de Señal , Animales , Femenino
10.
Nature ; 614(7946): 144-152, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509107

RESUMEN

Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.


Asunto(s)
Moléculas de Adhesión Celular , Comunicación Celular , Biología Sintética , Cadherinas/química , Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Integrinas/química , Biología Sintética/métodos , Dominios Proteicos , Sitios de Unión , Ingeniería Celular
11.
Nat Rev Mol Cell Biol ; 17(1): 5-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26670017

RESUMEN

The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma , Genómica/métodos , Edición de ARN/genética , Animales , Humanos , Modelos Genéticos , Transcripción Genética
12.
Cell ; 154(4): 875-87, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953117

RESUMEN

Allosteric interactions provide precise spatiotemporal control over signaling proteins, but how allosteric activators and their targets coevolve is poorly understood. Here, we trace the evolution of two allosteric activator motifs within the yeast scaffold protein Ste5 that specifically target the mating MAP kinase Fus3. One activator (Ste5-VWA) provides pathway insulation and dates to the divergence of Fus3 from its paralog, Kss1; a second activator (Ste5-FBD) that tunes mating behavior is, in contrast, not conserved in most lineages. Surprisingly, both Ste5 activator motifs could regulate MAP kinases that diverged from Fus3 prior to the emergence of Ste5, suggesting that Ste5 activators arose by exploiting latent regulatory features already present in the MAPK ancestor. The magnitude of this latent allosteric potential drifts widely among pre-Ste5 MAP kinases, providing a pool of hidden phenotypic diversity that, when revealed by new activators, could lead to functional divergence and to the evolution of distinct signaling behaviors.


Asunto(s)
Ascomicetos/genética , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Ascomicetos/enzimología , Ascomicetos/metabolismo , Activación Enzimática , Evolución Molecular , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Moleculares , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
13.
Cell ; 155(6): 1422-34, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315106

RESUMEN

The complex, interconnected architecture of cell-signaling networks makes it challenging to disentangle how cells process extracellular information to make decisions. We have developed an optogenetic approach to selectively activate isolated intracellular signaling nodes with light and use this method to follow the flow of information from the signaling protein Ras. By measuring dose and frequency responses in single cells, we characterize the precision, timing, and efficiency with which signals are transmitted from Ras to Erk. Moreover, we elucidate how a single pathway can specify distinct physiological outcomes: by combining distinct temporal patterns of stimulation with proteomic profiling, we identify signaling programs that differentially respond to Ras dynamics, including a paracrine circuit that activates STAT3 only after persistent (>1 hr) Ras activation. Optogenetic stimulation provides a powerful tool for analyzing the intrinsic transmission properties of pathway modules and identifying how they dynamically encode distinct outcomes.


Asunto(s)
Células/metabolismo , Sistema de Señalización de MAP Quinasas , Optogenética/métodos , Análisis de la Célula Individual/métodos , Animales , Ratones , Células 3T3 NIH , Células PC12 , Comunicación Paracrina , Ratas , Factor de Transcripción STAT3/metabolismo , Proteínas ras/metabolismo
14.
Cell ; 152(5): 1173-83, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452860

RESUMEN

Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale.


Asunto(s)
Endodesoxirribonucleasas/genética , Escherichia coli/genética , Técnicas de Silenciamiento del Gen/métodos , Interferencia de ARN , Streptococcus pyogenes/enzimología , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Expresión Génica , Streptococcus pyogenes/genética , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética , ARN Pequeño no Traducido
15.
Cell ; 154(2): 442-51, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23849981

RESUMEN

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Asunto(s)
Proteínas Bacterianas/genética , Marcación de Gen/métodos , Streptococcus pyogenes , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , ARN Pequeño no Traducido
16.
Cell ; 151(2): 320-32, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23039994

RESUMEN

How cells form global, self-organized structures using genetically encoded molecular rules remains elusive. Here, we take a synthetic biology approach to investigate the design principles governing cell polarization. First, using a coarse-grained computational model, we searched for all possible simple networks that can achieve polarization. All solutions contained one of three minimal motifs: positive feedback, mutual inhibition, or inhibitor with positive feedback. These minimal motifs alone could achieve polarization under limited conditions; circuits that combined two or more of these motifs were significantly more robust. With these design principles as a blueprint, we experimentally constructed artificial polarization networks in yeast, using a toolkit of chimeric signaling proteins that spatially direct the synthesis and degradation of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)). Circuits with combinatorial motifs yielded clear foci of synthetic PIP(3) that can persist for nearly an hour. Thus, by harnessing localization-regulated signaling molecules, we can engineer simple molecular circuits that reliably execute spatial self-organized programs.


Asunto(s)
Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citología , Algoritmos , Polaridad Celular , Citosol/metabolismo , Retroalimentación Fisiológica , Fosfatos de Fosfatidilinositol/biosíntesis , Biología Sintética
17.
Cell ; 150(2): 413-25, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817900

RESUMEN

Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.


Asunto(s)
Eucariontes/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Ubiquitinación
18.
Nat Rev Mol Cell Biol ; 14(6): 393-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23636498

RESUMEN

The past few years have marked significant anniversaries in signal transduction, including the identification of classic growth factors and morphogens, the notion of protein modification through phosphorylation and the characterization of protein interaction domains. Here, six researchers reflect on the context in which these discoveries were made, and how our concept of cell signalling has evolved during the past three decades.


Asunto(s)
Investigación Biomédica/historia , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Animales , Investigación Biomédica/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Fosforilación
19.
Cell ; 142(5): 661-7, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813250

RESUMEN

Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling-tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains-is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans.


Asunto(s)
Evolución Molecular , Fosfotirosina/metabolismo , Transducción de Señal , Animales , Coanoflagelados/genética , Coanoflagelados/metabolismo , Proteínas Tirosina Quinasas/metabolismo
20.
Mol Cell ; 67(5): 757-769.e5, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28826673

RESUMEN

Cell signaling networks coordinate specific patterns of protein expression in response to external cues, yet the logic by which signaling pathway activity determines the eventual abundance of target proteins is complex and poorly understood. Here, we describe an approach for simultaneously controlling the Ras/Erk pathway and monitoring a target gene's transcription and protein accumulation in single live cells. We apply our approach to dissect how Erk activity is decoded by immediate early genes (IEGs). We find that IEG transcription decodes Erk dynamics through a shared band-pass filtering circuit; repeated Erk pulses transcribe IEGs more efficiently than sustained Erk inputs. However, despite highly similar transcriptional responses, each IEG exhibits dramatically different protein-level accumulation, demonstrating a high degree of post-transcriptional regulation by combinations of multiple pathways. Our results demonstrate that the Ras/Erk pathway is decoded by both dynamic filters and logic gates to shape target gene responses in a context-specific manner.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/enzimología , Genes Inmediatos-Precoces , Proteínas Inmediatas-Precoces/biosíntesis , Transducción de Señal , Transcripción Genética , Proteínas ras/metabolismo , Animales , Simulación por Computador , Activación Enzimática , Retroalimentación Fisiológica , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Luz , Ratones , Modelos Genéticos , Células 3T3 NIH , Optogenética , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Análisis de la Célula Individual , Factores de Tiempo , Transcriptoma , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA