Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785503

RESUMEN

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

2.
Antonie Van Leeuwenhoek ; 117(1): 64, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565745

RESUMEN

Trichoderma harzianum is a filamentous fungus that can act as a mycoparasite, saprophyte, or a plant symbiotic. It is widely used as a biological control agent against phytopathogenic fungi and can also be used for plant growth promotion and biofortification. Interaction between T. harzianum and phytopathogenic fungi involves mycoparasitism, competition, and antibiosis. Extracellular vesicles (EVs) have been described as presenting a central role in mechanisms of communication and interaction among fungus and their hosts. In this study, we characterized extracellular vesicles of T. harzianum produced during growth in the presence of glucose or S. sclerotiorum mycelia. A set of vesicular proteins was identified using proteomic approach, mainly presenting predicted signal peptides.


Asunto(s)
Vesículas Extracelulares , Hypocreales , Trichoderma , Trichoderma/metabolismo , Proteómica
3.
J Vet Pharmacol Ther ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655611

RESUMEN

Pharmacokinetics studies of anesthetic agents are important for understanding of the pharmacology and metabolism of anesthetic agents in reptilians. This study was designed to examine the pharmacokinetic and pharmacodynamic properties of intravenous dextroketamine alone or combined with midazolam in Caiman crocodilus. Eight caimans were anesthetized with dextroketamine (10 mg/kg; group D) or dextroketamine and midazolam (10 and 0.5 mg/kg respectively; group DM) into the occipital venous sinus. The pharmacokinetic parameters were calculated by HPLC using a non-compartmental modeling. Serial blood samples were collected at baseline and within 15 and 30 min, and 11.5, 2, 4, 8, 12, 24 and 48 h of drug administration. Sedation status over time differed between groups. All animals in group D (8/8; 100%) showed signs of light sedation at t10. Half (4/8; 50%) of these caimans did not progress to deeper levels of sedation. In spite of light sedation at t10, animals in group DM were deeply sedated within 13.13 ± 7.04 min of anesthetic agent injection. The area under the plasma concentration-time curve (AUC0-48) and half-life of dextroketamine changed significantly after combination with midazolam. Even without significant changes in clearance, the almost two-fold increase in the half-life of dextroketamine suggests a slower rate of elimination.

4.
BMC Vet Res ; 18(1): 225, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701767

RESUMEN

BACKGROUND: The analgesic and cardiorespiratory effects of ketamine, fentanyl, or ketamine-fentanyl constant rate infusion (CRI) in dogs undergoing mastectomy were evaluated. Seventeen female dogs received CRI of ketamine (GK [n = 6]: bolus 0.5 mg/kg; CRI 20 µg/kg/min in intra- and postoperative periods], fentanyl (GF [n = 5]: bolus 20 µg/kg; intraoperative CRI 5 20 µg/kg/hour and postoperative CRI 2 20 µg/kg/hour), or combination of ketamine-fentanyl (GKF [n = 6]: aforementioned doses) for 8 h. Cardiorespiratory, blood gas analyses, plasma drug concentrations, sedation score (SS), Pain Scores were evaluated. RESULTS: The heart rate decreased in the GF and GKF (p < 0.04); the mean arterial pressure was lower in the GKF than in the GK at 35 min (p < 0.001). Maximum plasma concentrations were observed 5 min after bolus in the GK (2847.06 ± 2903.03 ng/mL) and GKF (2811.20 ± 1931.76 ng/mL). Plasma concentration in intraoperative period of ketamine was of > 100 ng/mL in 5/5 and 2/5 animals in the GKF and GK, respectively; and > 1.1 ng/mL of fentanyl in 4/5 and 3/5 in GKF and GF, respectively. CONCLUSION: Ketamine with/without fentanyl provided analgesia without significant cardiorespiratory and guaranteed the minimal plasma levels with analgesic potential during the 8 h.


Asunto(s)
Analgesia , Ketamina , Analgesia/veterinaria , Analgésicos/uso terapéutico , Animales , Perros , Femenino , Fentanilo/farmacología , Mastectomía/veterinaria
5.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889459

RESUMEN

Psoralen (PSO) and 5-methoxypsoralen (5-MOP) are widely used drugs in oral photochemotherapy against vitiligo and major bioactive components of root bark extract of Brosimum gaudichaudii Trécul (EBGT), previously standardized by LC-MS. However, the exceptionally low water solubility of these psoralens can cause incomplete and variable bioavailability limiting their applications and patient adherence to treatment. Therefore, the purpose of this work was to investigate the effects of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) inclusion complex on the solubility and jejunal permeability of PSO and 5-MOP from EBGT. Characterization of inclusion complexes were evaluated by current methods in nuclear magnetic resonance studies on aqueous solution, Fourier transform infrared spectroscopy, thermal analysis, and scanning electron microscopy in solid state. Ex vivo rat jejunal permeability was also investigated and compared for both pure psoralens and plant extract formulation over a wide HP-ß-CD concentration range (2.5 to 70 mM). Phase solubility studies of the PSO- and 5-MOP-HP-ß-CD inclusion complex showed 1:1 inclusion complex formation with small stability constants (Kc < 500 M−1). PSO and 5-MOP permeability rate decreased after adding HP-ß-CD by 6- and 4-fold for pure standards and EBGT markers, respectively. Nevertheless, the complexation with HP-ß-CD significantly improved solubility of PSO (until 10-fold) and 5-MOP (until 31-fold). As a result, the permeability drop could be overcome by solubility augmentation, implying that the HP-ß-CD inclusion complexes with PSO, 5-MOP, or EBGT can be a valuable tool for designing and developing novel oral drug product formulation containing these psoralens for the treatment of vitiligo.


Asunto(s)
Furocumarinas , Moraceae , Vitíligo , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Animales , Rastreo Diferencial de Calorimetría , Permeabilidad , Extractos Vegetales/farmacología , Ratas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , beta-Ciclodextrinas/química
6.
J Tissue Viability ; 31(4): 606-613, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36068126

RESUMEN

AIMS: This study aimed to evaluate the cicatricial potential of melatonin when applied to wounds of diabetic rats. MATHERIALS AND METHODS: The formulation containing melatonin was developed and applied topically to cutaneous wounds of diabetic rats. 48 Wistar rats were used, divided into two groups of 24 diabetic animals each: (i) control group (CG), the animals received topical application of the no-melatonin formulation; (ii) treatment group (TG), the animals received topical application of the melatonin-containing formulation. All animals in each group were treated at four time points: 3, 7, 14, and 21 days. Each subgroup consisted of six animals. RESULTS: The treatment with melatonin improved wound healing by promoting wound closure earlier than the control group evaluated. Also improved a better resolution of the inflammatory phase observed mainly at 7 days, higher tissue maturation and expressive collagen deposition. CONCLUSION: The observed data reveal that the use of melatonin topically could be a promising strategy for the healing of wounds in diabetes. The results of this study elucidate the effects of previously described pathways in which it is proposed that melatonin acts promoting wound healing in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Melatonina , Traumatismos de los Tejidos Blandos , Ratas , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Ratas Wistar , Cicatrización de Heridas , Colágeno/farmacología , Colágeno/uso terapéutico , Piel
7.
J Cell Physiol ; 236(1): 366-378, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32519379

RESUMEN

The effects of the renin-angiotensin system (RAS) on stem cells isolated from human dental apical papilla (SCAPs) are completely unknown. Therefore, the aim of this study was to identify RAS components expressed in SCAPs and the effects of angiotensin (Ang) II and Ang-(1-7) on cell proliferation. SCAPs were collected from third molar teeth of adolescents and maintained in cell culture. Messenger RNA expression and protein levels of angiotensin-converting enzyme (ACE), ACE2, and Mas, Ang II type I (AT1) and type II (AT2) receptors were detected in SCAPs. Treatment with either Ang II or Ang-(1-7) increased the proliferation of SCAPs. These effects were inhibited by PD123319, an AT2 antagonist. While Ang II augmented mTOR phosphorylation, Ang-(1-7) induced ERK1/2 phosphorylation. In conclusion, SCAPs produce the main RAS components and both Ang II and Ang-(1-7) treatments induced cell proliferation mediated by AT2 activation through different intracellular mechanisms.


Asunto(s)
Angiotensina II/farmacología , Angiotensina I/farmacología , Proliferación Celular/efectos de los fármacos , Papila Dental/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Células Madre/efectos de los fármacos , Adolescente , Células Cultivadas , Papila Dental/metabolismo , Femenino , Humanos , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Peptidil-Dipeptidasa A/metabolismo , Fosforilación/efectos de los fármacos , Piridinas/farmacología , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Células Madre/metabolismo
8.
Contact Dermatitis ; 84(2): 67-74, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32683706

RESUMEN

BACKGROUND: Currently, considerable efforts to standardize methods for accurate assessment of properties and safety aspects of nanomaterials are being made. However, immunomodulation effects upon skin exposure to nanomaterial have not been explored. OBJECTIVES: To investigate the immunotoxicity of single-wall carbon nanotubes, titanium dioxide, and fullerene using the current mechanistic understanding of skin sensitization by applying the concept of adverse outcome pathway (AOP). METHODS: Investigation of the ability of nanomaterials to interact with skin proteins using the micro-direct peptide reactivity assay; the expression of CD86 cell surface marker using the U937 cell activation test (OECD No. 442E/2018); and the effects of nanomaterials on modulating inflammatory response through inflammatory cytokine release by U937 cells. RESULTS: The nanomaterials easily internalized into keratinocytes cells, interacted with skin proteins, and triggered activation of U937 cells by increasing CD86 expression and modulating inflammatory cytokine production. Consequently, these nanomaterials were classified as skin sensitizers in vitro. CONCLUSIONS: Our study suggests the potential immunotoxicity of nanomaterials and highlights the importance of studying the immunotoxicity and skin sensitization potential of nanomaterials to anticipate possible human health risks using standardized mechanistic nonanimal methods with high predictive accuracy. Therefore, it contributes toward the applicability of existing OECD (Organisation for Economic Co-operation and Development) testing guidelines for accurate assessment of nanomaterial skin sensitization potential.


Asunto(s)
Rutas de Resultados Adversos , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/inmunología , Fulerenos/efectos adversos , Nanotubos de Carbono/efectos adversos , Titanio/efectos adversos , Antígeno B7-2/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Dermatitis Alérgica por Contacto/metabolismo , Células HaCaT , Humanos , Inmunomodulación , Queratinocitos/metabolismo , Células U937
9.
Mol Pharm ; 17(3): 837-851, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31977228

RESUMEN

Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.


Asunto(s)
Portadores de Fármacos/química , Membrana Eritrocítica/química , Compuestos Férricos/química , Colorantes Fluorescentes/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Imanes/química , Compuestos de Manganeso/química , Terapia Fototérmica/métodos , Animales , Carcinoma de Ehrlich/tratamiento farmacológico , Modelos Animales de Enfermedad , Portadores de Fármacos/farmacocinética , Femenino , Compuestos Férricos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Hipertermia Inducida/métodos , Compuestos de Manganeso/farmacocinética , Ratones , Tamaño de la Partícula , Nanomedicina Teranóstica/métodos , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
10.
Molecules ; 25(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33142961

RESUMEN

Previous non-viral gene therapy was directed towards two animal models of dwarfism: Immunodeficient (lit/scid) and immunocompetent (lit/lit) dwarf mice. The former, based on hGH DNA administration into muscle, performed better, while the latter, a homologous model based on mGH DNA, was less efficient, though recommended as useful for pre-clinical assays. We have now improved the growth parameters aiming at a complete recovery of the lit/lit phenotype. Electrotransfer was based on three pulses of 375 V/cm of 25 ms each, after mGH-DNA administration into two sites of each non-exposed tibialis cranialis muscle. A 36-day bioassay, performed using 60-day old lit/lit mice, provided the highest GH circulatory levels we have ever obtained for GH non-viral gene therapy: 14.7 ± 3.7 ng mGH/mL. These levels, at the end of the experiment, were 8.5 ± 2.3 ng/mL, i.e., significantly higher than those of the positive control (4.5 ± 1.5 ng/mL). The catch-up growth reached 40.9% for body weight, 38.2% for body length and 82.6%-76.9% for femur length. The catch-up in terms of the mIGF-1 levels remained low, increasing from the previous value of 5.9% to the actual 8.5%. Although a complete phenotypic recovery was not obtained, it should be possible starting with much younger animals and/or increasing the number of injection sites.


Asunto(s)
Electroporación , Técnicas de Transferencia de Gen , Terapia Genética , Hormona del Crecimiento , Músculo Esquelético/metabolismo , Plásmidos , Animales , Hormona del Crecimiento/biosíntesis , Hormona del Crecimiento/genética , Ratones
11.
Pharm Res ; 36(9): 131, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263962

RESUMEN

PURPOSE: Intranasal administration has been extensively applied to deliver drugs to the brain. In spite of its unfavorable biopharmaceutic properties, melatonin (MLT) has demonstrated anticancer effects against glioblastoma. This study describes the nose-to-brain delivery of MLT-loaded polycaprolactone nanoparticles (MLT-NP) for the treatment of glioblastoma. METHODS: MLT-NP were prepared by nanoprecipitation. Following intranasal administration in rats, brain targeting of the formulation was demonstrated by fluorescence tomography. Brain and plasma pharmacokinetic profiles were analyzed. Cytotoxicity against U87MG glioblastoma cells and MRC-5 non-tumor cells was evaluated. RESULTS: MLT-NP increased the drug apparent water solubility ~35 fold. The formulation demonstrated strong activity against U87MG cells, resulting in IC50 ~2500 fold lower than that of the free drug. No cytotoxic effect was observed against non-tumor cells. Fluorescence tomography images evidenced the direct translocation of nanoparticles from nasal cavity to the brain. Intranasal administration of MLT-NP resulted in higher AUCbrain and drug targeting index compared to the free drug by either intranasal or oral route. CONCLUSIONS: Nanoencapsulation of MLT was crucial for the selective antitumoral activity against U87MG. In vivo evaluation confirmed nose-to-brain delivery of MLT mediated by nanoparticles, highlighting the formulation as a suitable approach to improve glioblastoma therapy.


Asunto(s)
Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Melatonina/farmacocinética , Nanopartículas/química , Poliésteres/química , Administración Intranasal , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Masculino , Melatonina/administración & dosificación , Ratas Wistar , Solubilidad , Distribución Tisular
12.
Contact Dermatitis ; 81(3): 194-209, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31006869

RESUMEN

BACKGROUND: Allergic contact dermatitis caused by henna-based hair-colouring products has been associated with adulteration of henna with p-phenylenediamine (PPD). OBJECTIVES: To develop a testing approach based on in vitro techniques that address key events within the skin sensitization adverse outcome pathway in order to evaluate the allergenic potential of hair-colouring products. METHODS: The following in vitro assays were used to test the sensitizing capacity of hair dye ingredients: the micro-direct peptide reactivity assay (mDPRA); the HaCaT keratinocyte-associated interleukin (IL)-18 assay; the U937 cell line activation test (U-SENS)/IL-8 levels; the blood monocyte-derived dendritic cell test; and genomic allergen rapid detection (GARD skin). Those techniques with better human concordance were selected to evaluate the allergenic potential of 10 hair-colouring products. RESULTS: In contrast to the information on the label, chromatographic analyses identified PPD in all products. The main henna biomarker, lawsone, was not detected in one of the 10 products. Among the techniques evaluated by testing hair dye ingredients, the mDPRA, the IL-18 assay, GARD skin and the U-SENS correlated better with human classification (concordances of 91.7%-100%) and were superior to the animal testing (concordance of 78.5%). Thus, these assays were used to evaluate hair-colouring products, which were classified as skin sensitizers by the use of different two-of-three approaches. CONCLUSIONS: Our findings highlight the toxicological consequences of, and risks associated with, the undisclosed use of PPD in henna-based "natural" "real-life" products.


Asunto(s)
Tinturas para el Cabello/efectos adversos , Naftoquinonas/efectos adversos , Fenilendiaminas/efectos adversos , Antígeno B7-2/metabolismo , Bioensayo/métodos , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Células Dendríticas/metabolismo , Dermatitis Alérgica por Contacto/etiología , Tinturas para el Cabello/química , Humanos , Técnicas In Vitro , Interleucina-18/metabolismo , Interleucina-8/metabolismo , Queratinocitos/metabolismo , Naftoquinonas/análisis , Fenilendiaminas/análisis
13.
AAPS PharmSciTech ; 19(1): 201-212, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28681330

RESUMEN

Co-encapsulation of anticancer drugs paclitaxel and imatinib in nanocarriers is a promising strategy to optimize cancer treatment. Aiming to combine the cytotoxic and antiangiogenic properties of the drugs, a liposome formulation targeted to folate receptor co-encapsulating paclitaxel and imatinib was designed in this work. An efficient method was optimized for the synthesis of the lipid anchor DSPE-PEG(2000)-folic acid (FA). The structure of the obtained product was confirmed by RMN, FT-IR, and ESI-MS techniques. A new analytical method was developed and validated for simultaneous quantification of the drugs by liquid chromatography. Liposomes, composed of phosphatidylcholine, cholesterol, and DSPE-mPEG(2000), were prepared by extrusion. Their surface was modified by post-insertion of DSPE-PEG(2000)-FA. Reaction yield for DSPE-PEG(2000)-FA synthesis was 87%. Liposomes had a mean diameter of 122.85 ± 1.48 nm and polydispersity index of 0.19 ± 0.01. Lyophilized formulations remained stable for 60 days in terms of size and drug loading. FA-targeted liposomes had a higher effect on MCF7 cell viability reduction (p < 0.05) when compared with non-targeted liposomes and free paclitaxel. On PC-3 cells, viability reduction was greater (p < 0.01) when cells were exposed to targeted vesicles co-encapsulating both drugs, compared with the non-targeted formulation. VEGF gene expression was reduced in MCF7 and PC-3 cells (p < 0.0001), with targeted vesicles exhibiting better performance than non-targeted liposomes. Our results demonstrate that multifunctional liposomes associating molecular targeting and multidrug co-encapsulation are an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells, combining multiple antitumor strategies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Receptores de Folato Anclados a GPI , Mesilato de Imatinib/administración & dosificación , Paclitaxel/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ácido Fólico/química , Humanos , Mesilato de Imatinib/farmacología , Liposomas , Células MCF-7 , Paclitaxel/farmacología , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Planta Med ; 83(18): 1431-1437, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28651288

RESUMEN

The topical application of Centella asiatica extract has been commonly used for many different purposes but especially for cosmetic use in the treatment of gynoid lipodystrophy. Asiaticoside, the most active component in this extract, is responsible for its therapeutic activities. However, little is known to date about asiaticoside skin penetration. Thus, an analytical method for asiaticoside quantification in different skin layers after the topical application of C. asiatica extract was developed and skin permeation studies were performed with the plant extract to apply the analytical method developed. An extraction procedure to recover asiaticoside from the biological matrix was also developed. Asiaticoside was assayed by HPLC/UV (high-performance liquid chromatography-ultraviolet detection) using a gradient of ACN (acetonitrile) and 0.2% phosphoric acid (flow rate of 1.0 mL/min). The analytical procedure was validated according to U. S. Food and Drug Administration guidelines. Selectivity was shown, as endogenous skin components did not interfere with the asiaticoside peak. Analytical curve was linear (3 to 60 µg/mL) and the lower limit of quantification was determined (3 µg/mL). Asiaticoside recoveries from skin samples were 95.1% and 66.7% for the stratum corneum and remaining skin, respectively. After 48 h of in vitro permeation studies, a substantial amount of asiaticoside was quantified in the skin layers. The presence of asiaticoside was also detected in the receptor solution of Franz diffusion cells after 48 h (5.81 ± 1.00 µg/mL). The method was reliable and reproducible for asiaticoside quantification in skin samples, thereby making it possible to determine the cutaneous penetration profile of this drug in permeation studies.


Asunto(s)
Centella/química , Cromatografía Líquida de Alta Presión/métodos , Triterpenos/farmacocinética , Administración Cutánea , Extractos Vegetales , Piel/metabolismo , Absorción Cutánea , Triterpenos/química
15.
Drug Dev Ind Pharm ; 43(5): 762-769, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27487264

RESUMEN

Recent advances in the treatment of Chagas disease have followed combinations of drugs that act synergistically against infection, predominantly including benznidazole (BNZ) and azoles derivatives. Possible incompatibilities between these drugs, slow dissolution of BNZ and dose adjustment difficulties are technological obstacles to the development of multidrug formulations. Thus, in the present study, BNZ pellets were developed using extrusion spheronization for immediate drug delivery. Preformulation studies were then performed using thermal analysis and infrared spectroscopy and compatibility between the drug and selected excipients (polyethylene glycol 6000, sodium starch glycolate, microcrystalline cellulose and sodium croscarmellose) was investigated. No chemical decomposition of BNZ was observed, even in samples submitted to wet granulation and thermal stress. Subsequently, formulations were elaborated according to a simplex lattice experimental design using polyethylene glycol, sodium starch glycolate and sodium croscarmellose as disintegrating agents. In these experiments, BNZ pellets showed appropriate physicochemical characteristics, including high drug load capacity and excellent flow properties. The mixture experimental design allowed identification of adequate compositions of disintegrating agents and achieved rapid disintegration and dissolution of pellets. Optimum performance was achieved using polyethylene glycol and sodium croscarmellose at 5.0% w/w each. The present BNZ pellets are versatile alternatives to treat Chagas disease and provide insights into the preparation of multidrug systems.


Asunto(s)
Composición de Medicamentos/métodos , Implantes de Medicamentos/química , Nitroimidazoles/química , Ácidos Polimetacrílicos/química , Carboximetilcelulosa de Sodio/química , Celulosa/química , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Polietilenglicoles/química , Solubilidad , Almidón/análogos & derivados , Almidón/química
16.
Int J Mol Sci ; 18(2)2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28165356

RESUMEN

Human thyrotropin (hTSH) is a glycoprotein with three potential glycosylation sites: two in the α-subunit and one in the ß-subunit. These sites are not always occupied and occupancy is frequently neglected in glycoprotein characterization, even though it is related to folding, trafficking, initiation of inflammation and host defense, as well as congenital disorders of glycosylation (CDG). For the first time N-glycoprofiling analysis was applied to the site-occupancy determination of two native pituitary hTSH, in comparison with three recombinant preparations of hTSH, a widely used biopharmaceutical. A single methodology provided the: (i) average N-glycan mass; (ii) mass fraction of each monosaccharide and of sulfate; and (iii) percent carbohydrate. The results indicate that the occupancy (65%-87%) and carbohydrate mass (12%-19%) can be up to 34%-57% higher in recombinant hormones. The average glycan mass is 24% lower in pituitary hTSH and contains ~3-fold fewer moles of galactose (p < 0.005) and sialic acid (p < 0.01). One of the two native preparations, which had the smallest glycan mass together with the lowest occupancy and GalNAc, sulfate, Gal and sialic acid contents, also presented the lowest in vivo bioactivity and circulatory half-life. The methodology described, comparing a recombinant biopharmaceutical to its native equivalent, can be applied to any physiologically or clinical relevant glycoprotein.


Asunto(s)
Carbohidratos/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Tirotropina/química , Tirotropina/metabolismo , Animales , Células CHO , Cricetulus , Glicoproteínas/farmacocinética , Glicosilación , Humanos , Ratones , Polisacáridos , Proteínas Recombinantes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirotropina/farmacocinética
17.
AAPS PharmSciTech ; 18(6): 2260-2268, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28074422

RESUMEN

Pellet-containing tablets for colon-specific drug delivery present higher targeting efficiency and lower costs when compared with monolithic tablets and pellet-filled capsules, respectively. In this study, pellets containing ketoprofen were coated with different acrylic polymers and submitted to compaction. The influence of formulation and process factors on film integrity was then evaluated. Pellets were prepared via extrusion-spheronization and coated using two acrylic polymers (Eudragit® FS 30 D and Opadry® 94 k28327, PMMA and PMA, respectively). The resulting pellets were mixed with placebo granules and compressed in a hydraulic press. Multiple regression showed that ketoprofen release from pellet-containing tablets is predominantly influenced by pellet content, hardness, friability, and disintegration time. PMA-containing tablets prepared under low compaction force or with low pellet content showed rapid disintegration (<1 min) and ketoprofen release similar to those of uncompressed coated pellets (∼30% at 360 min of experiment). On the other hand, PMMA-containing tablets showed a higher rupture level, and those prepared with higher pellet content gave rise to a non-disintegrating matrix. Coated pellets were shown to be able to target ketoprofen to the colonic region. Targeting capacity was dependent on the physicochemical characteristics of the tablets.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Colon/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Cetoprofeno/administración & dosificación , Humanos , Cetoprofeno/química , Polímeros/química , Comprimidos
18.
Pharm Biol ; 55(1): 1899-1908, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28644062

RESUMEN

CONTEXT: 4-Nerolidylcatechol (4-NRC) has showed antitumor potential through apoptosis. However, its apoptotic mechanisms are still unclear, especially in leukemic cells. OBJECTIVES: To evaluate the cytotoxic potential of 4-NRC and its cell death pathways in p53-null K562 leukemic cells. MATERIALS AND METHODS: Cytotoxicity of 4-NRC (4.17-534.5 µM) over 24 h of exposure was evaluated by MTT assay. 4-NRC-induced apoptosis in K562 cells was investigated by phosphatidylserine (PS) externalization, cell cycle, sub-G1, mitochondrial evaluation, cytochrome c, cyclin D1 and intracellular reactive oxygen species (ROS) levels, and caspase activity analysis. RESULTS: IC50 values obtained were 11.40, 27.31, 15.93 and 15.70 µM for lymphocytes, K562, HL-60 and Jurkat cells, respectively. In K562 cells, 4-NRC (27 µM) promoted apoptosis as verified by cellular morphological changes, a significant increase in PS externalization and sub-G1 cells. Moreover, it significantly arrested the cells at the G0/G1 phase due to a reduction in cyclin D1 expression. These effects of 4-NRC also significantly promoted a reduction in mitochondrial activity and membrane depolarization, accumulation of cytosolic cytochrome c and ROS overproduction. Additionally, it triggered an increase in caspases -3/7, -8 and -9 activities. When the cells were pretreated with N-acetyl-l-cysteine ROS scavenger, 4-NRC-induced apoptosis was partially blocked, which suggests that it exerts cytotoxicity though not exclusively through ROS-mediated mechanisms. DISCUSSION AND CONCLUSION: 4-NRC has antileukemic properties, inducing apoptosis mediated by mitochondrial-dependent mechanisms with cyclin D1 inhibition. Given that emerging treatment concepts include novel combinations of well-known agents, 4-NRC could offer a promising alternative for chemotherapeutic combinations to maximize tumour suppression.


Asunto(s)
Apoptosis/fisiología , Catecoles/farmacología , Ciclina D1/metabolismo , Fase G1/fisiología , Mitocondrias/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Ciclina D1/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Fase G1/efectos de los fármacos , Células HL-60 , Humanos , Células Jurkat , Células K562 , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Mitocondrias/efectos de los fármacos
19.
J Nanosci Nanotechnol ; 15(1): 838-47, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328448

RESUMEN

Liposomes containing 4-nerolidylcatechol (4-NC), the major metabolite isolated from Pothomorphe umbellata, were obtained and characterized. Influence of liposomal encapsulation on chemical stability of 4-NC and on cytotoxicity profile of this drug was evaluated. Soybean phosphatidylcholine liposomes were prepared by lipid film hydration followed by extrusion. Entrapment efficiency for 4-NC was approximately 92%. Mean diameter of liposomes was 100 nm with a polydispersity index below 0.13. Liposomal 4-NC (L4-NC) and free drug (F4-NC) were submitted to forced degradation assays, monitored by HPLC. Photodegradation assay followed ICH Guidelines, using a photostability chamber equipped with both UV and white light sources. Liposomal encapsulation was able to markedly reduce 4-NC degradation rates under all the conditions tested. L4-NC showed a half-live approximately 15% higher than F4-NC under light exposure. After 72 hours, acid and base hydrolysis of F4-NC lead to 13 and 16% of degradation, respectively. However, no degradation was observed in L4-NC. EPR spectra of liposomal membrane showed that greatest changes in membrane properties were obtained when 5-doxyl stearic acid was used as the spin label, indicating a marked decrease in the fluidity of the bilayer. Following incubation with K562 cells, 4-NC showed a concentration-dependent cytotoxicity profile, while L4-NC exhibited a time and concentration-dependent profile, consistent with a controlled drug release system. F4-NC induced extensive hemolysis under isotonic conditions; conversely liposomal encapsulation protected erythrocytes from 4-NC induced lysis. Liposomal 4-NC resulted in a hemocompatibility and stable formulation, representing a viable drug delivery system to further investigate in vivo performances of 4-NC in pre clinical studies.


Asunto(s)
Catecoles/química , Catecoles/farmacología , Membrana Dobles de Lípidos/química , Liposomas/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Eritrocitos , Hemólisis/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/toxicidad , Ratones , Nanopartículas/química , Tamaño de la Partícula
20.
Pharm Dev Technol ; 20(8): 1002-1008, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25231642

RESUMEN

Enalapril maleate is a widely used drug, which is chemically unstable when mixed with excipients resulting in enalaprilat and diketopiperazine as the main degradation products. The preparation of enalapril sodium salt has been used to improve drug stability in solid dosage forms; however, product rejection is observed when the chemical reaction for obtaining the sodium salt is not completely finished before packaging. In this study, granules were prepared by melting granulation using stearic acid or glyceryl monostearate, with a view to developing more stable enalapril maleate solid dosage forms. The granules were prepared in a laboratory-scale high shear mixer and compressed in a rotary machine. Size distribution, flow properties, in vitro drug release and enalapril maleate chemical stability were evaluated and compared with data obtained from tablets prepared without hydrophobic binders. All formulations showed good physical properties and immediate drug release. The greatest improvement in the enalapril maleate stability was observed in formulations containing stearic acid. This study showed that hot melting granulation could be successfully used to prepare enalapril maleate granules which could substitute the in situ formation of enalapril sodium salt, since they provided better enalapril stability in solid dosage forms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA