Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 134(5)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32501284

RESUMEN

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Asunto(s)
Parásitos , Plasmodium , Animales , División Celular , Segregación Cromosómica/genética , Cinetocoros , Microtúbulos , Mitosis/genética , Plasmodium/genética , Huso Acromático/genética
2.
Cell Microbiol ; 21(10): e13082, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31283102

RESUMEN

The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.


Asunto(s)
Miosinas/metabolismo , Plasmodium/crecimiento & desarrollo , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Animales , Femenino , Estadios del Ciclo de Vida , Espectrometría de Masas , Ratones , Miosinas/química , Miosinas/genética , Fenotipo , Plasmodium/genética , Dominios Proteicos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Esporozoítos/crecimiento & desarrollo
3.
Sci Rep ; 7(1): 15577, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138437

RESUMEN

Plasmodium parasites, the causative agents of malaria, possess a distinctive membranous structure of flattened alveolar vesicles supported by a proteinaceous network, and referred to as the inner membrane complex (IMC). The IMC has a role in actomyosin-mediated motility and host cell invasion. Here, we examine the location, protein interactome and function of PhIL1, an IMC-associated protein on the motile and invasive stages of both human and rodent parasites. We show that PhIL1 is located in the IMC in all three invasive (merozoite, ookinete-, and sporozoite) stages of development, as well as in the male gametocyte and locates both at the apical and basal ends of ookinete and sporozoite stages. Proteins interacting with PhIL1 were identified, showing that PhIL1 was bound to only some proteins present in the glideosome motor complex (GAP50, GAPM1-3) of both P. falciparum and P. berghei. Analysis of PhIL1 function using gene targeting approaches indicated that the protein is required for both asexual and sexual stages of development. In conclusion, we show that PhIL1 is required for development of all zoite stages of Plasmodium and it is part of a novel protein complex with an overall composition overlapping with but different to that of the glideosome.


Asunto(s)
Malaria Falciparum/genética , Proteínas de la Membrana/genética , Plasmodium berghei/genética , Plasmodium falciparum/genética , Actomiosina/genética , Secuencia de Aminoácidos/genética , Animales , Gametogénesis/genética , Humanos , Malaria Falciparum/parasitología , Proteínas de la Membrana/metabolismo , Ratones , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Reproducción Asexuada/genética , Esporozoítos/genética , Esporozoítos/crecimiento & desarrollo , Sinapsinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA