Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Build Environ ; 228: 109787, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36407877

RESUMEN

Chlorine-containing disinfectants are widely used in hospitals to prevent hospital-acquired severe acute respiratory syndrome coronavirus 2 infection. Meanwhile, ventilation is a simple but effective means to maintain clean air. It is essential to explore the exposure level and health effects of coronavirus disease 2019 patients' inhalation exposure to by-products of chloride-containing disinfectants under frequent surface disinfection and understand the role of ventilation in mitigating subsequent airway damage. We determined ventilation dilution performance and indoor air quality of two intensive care unit wards of the largest temporary hospital constructed in China, Leishenshan Hospital. The chloride inhalation exposure levels, and health risks indicated by interleukin-6 and D-dimer test results of 32 patients were analysed. The mean ± standard deviation values of the outdoor air change rate in the two intensive care unit wards were 8.8 ± 1.5 h-1 (Intensive care unit 1) and 4.1 ± 1.4 h-1 (Intensive care unit 2). The median carbon dioxide and fine particulate matter concentrations were 480 ppm and 19 µg/m3 for intensive care unit 1, and 567 ppm and 21 µg/m3 for intensive care unit 2, all of which were around the average levels of those in permanent hospitals (579 ppm and 21 µg/m3). Of these patients, the median (lower quartile, upper quartile) chloride exposure time and calculated dose were 26.66 (2.89, 57.21) h and 0.357 (0.008, 1.317) mg, respectively. A statistically significant positive correlation was observed between interleukin-6 and D-dimer concentrations. To conclude, ventilation helped maintain ward air cleanliness and health risks were not observed.

2.
Plant Cell Environ ; 45(10): 3070-3085, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880644

RESUMEN

The Meloidogyne enterolobii effector MeTCTP is a member of the translationally controlled tumour protein (TCTP) family, involved in M. enterolobii parasitism. In this study, we found that MeTCTP forms homodimers and, in this form, binds calcium ions (Ca2+ ). At the same time, Ca2+ could induce homodimerization of MeTCTP. We further identified that MeTCTP inhibits the increase of cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in plant cells and suppresses plant immune responses. This includes suppression of reactive oxygen species burst and cell necrosis, further promoting M. enterolobii parasitism. Our results have elucidated that the effector MeTCTP can directly target Ca2+ by its homodimeric form and prevent [Ca2+ ]cyt rise in plant roots, revealing a novel mechanism utilized by plant pathogens to suppress plant immunity.


Asunto(s)
Enfermedades de las Plantas , Tylenchoidea , Animales , Citosol , Inmunidad de la Planta , Raíces de Plantas
3.
Indoor Air ; 32(10): e13133, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305059

RESUMEN

Ngari Prefecture, Tibet, China, features its ultrahigh altitude above 4200 m, very little annual precipitation and extremely low relative humidity. Residents who have migrated to Tibet from the plains use indoor humidification to reduce the respiratory discomfort caused by prolonged exposure to dry indoor air. In this study, field investigations and analysis of residential indoor environments and humidification methods in Ngari Prefecture revealed that ninety-eight percent of humidifier consumers in the prefecture used low-cost ultrasonic humidifiers filled with indoor tap water. The results revealed that the arsenic (As) concentration of the tap water was 41.6 µg/L, over four times China's standards for drinking water quality (10 µg/L). The source As concentration in the air humidified by the tap water-filled ultrasonic humidifier is (619.8 ± 59.1) (ng/m3 ·air), while no As was detected in the air humidified by the evaporative humidifier. For ultrasonic humidifier with tap water-filled, the inhalation dose of a healthy adult was 45.4 ng/d. The minute ventilation volume of migrated residents who had been in Ngari for less than two years (12.5 ± 4.3 L/min) was greater than those of the long-term residents (10.0 ± 4.5 L/min), which may exacerbate the short-term inhalation exposure risk for migrated residents. To reduce the health risks associated with As exposure, evaporative humidifiers are recommended for households using domestic water. If ultrasonic humidifiers are used, the tap water must be purified with terminal filters.


Asunto(s)
Contaminación del Aire Interior , Arsénico , Exposición por Inhalación , Humidificadores , Humedad
4.
J Exp Bot ; 72(15): 5638-5655, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33974693

RESUMEN

Recent studies have reported that plant-parasitic nematodes facilitate their infection by suppressing plant immunity via effectors, but the inhibitory mechanisms remain poorly understood. This study found that a novel effector MgMO289 is exclusively expressed in the dorsal esophageal gland of Meloidogyne graminicola and is up-regulated at parasitic third-/fourth-stage juveniles. In planta silencing of MgMO289 substantially increased plant resistance to M. graminicola. Moreover, we found that MgMO289 interacts with a new rice copper metallochaperone heavy metal-associated plant protein 04 (OsHPP04), and that rice cytosolic COPPER/ZINC -SUPEROXIDE DISMUTASE 2 (cCu/Zn-SOD2) is the target of OsHPP04. Rice plants overexpressing OsHPP04 or MgMO289 exhibited an increased susceptibility to M. graminicola and a higher Cu/Zn-SOD activity, but lower O2•- content, when compared with wild-type plants. Meanwhile, immune response assays showed that MgMO289 could suppress host innate immunity. These findings reveal a novel pathway for a plant pathogen effector that utilizes the host O2•--scavenging system to eliminate O2•- and suppress plant immunity.


Asunto(s)
Oryza , Tylenchoidea , Animales , Cobre , Metalochaperonas , Oryza/genética , Enfermedades de las Plantas
5.
Indoor Air ; 31(6): 1833-1842, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34181766

RESUMEN

Since the coronavirus disease 2019 (COVID-19) outbreak, the nosocomial infection rate worldwide has been reported high. It is urgent to figure out an affordable way to monitor and alarm nosocomial infection. Carbon dioxide (CO2 ) concentration can reflect the ventilation performance and crowdedness, so CO2 sensors were placed in Beijing Tsinghua Changgung Hospital's fever clinic and emergency department where the nosocomial infection risk was high. Patients' medical records were extracted to figure out their timelines and whereabouts. Based on these, site-specific CO2 concentration thresholds were calculated by the dilution equation and sites' risk ratios were determined to evaluate ventilation performance. CO2 concentration successfully revealed that the expiratory tracer was poorly diluted in the mechanically ventilated inner spaces, compared to naturally ventilated outer spaces, among all of the monitoring sites that COVID-19 patients visited. Sufficient ventilation, personal protection, and disinfection measures led to no nosocomial infection in this hospital. The actual outdoor airflow rate per person (Qc ) during the COVID-19 patients' presence was estimated for reference using equilibrium analysis. During the stay of single COVID-19 patient wearing a mask, the minimum Qc value was 15-18 L/(s·person). When the patient was given throat swab sampling, the minimum Qc value was 21 L/(s·person). The Qc value reached 36-42 L/(s·person) thanks to window-inducted natural ventilation, when two COVID-19 patients wearing masks shared the same space with other patients or healthcare workers. The CO2 concentration monitoring system proved to be effective in assessing nosocomial infection risk by reflecting real-time dilution of patients' exhalation.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Infección Hospitalaria , Microbiología del Aire , Contaminación del Aire Interior/análisis , COVID-19/prevención & control , Infección Hospitalaria/prevención & control , Hospitales , Humanos , SARS-CoV-2 , Ventilación
6.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34368773

RESUMEN

Basilaphelenchus brevistylus n. sp. was isolated from masson pine (Pinus massoniana) in Guangdong province, China. The new species is characterized by an offset lip region, short stylet (female stylet 4.5-5.5 µm and male stylet 4-5 µm long) with three elongate posteriorly directed knobs, posteriorly located metacorpal valve and lateral field composed of three lines. The female has an elongate postuterine sac and a short conical tail, uniformly narrowing toward a sharp tip, or tapering to a slightly offset mucronate tip in a few individuals. The male has a conical tail with a sharp terminal mucro, three pairs of caudal papillae, and small arcuate spicules with a bluntly rounded condylus and small pointed rostrum. B. brevistylus n. sp. can be distinguished from all described Basilaphelenchus nematodes by numerous morphological and morphometrical traits, especially the tail morphology of both sexes and stylet length. In addition, molecular phylogenetic trees inferred from rRNA small subunit and D2-D3 expansion domains of large subunit revealed that this nematode belongs to the Basilaphelenchus, and is clearly different from all the other Basilaphelsenchus species.

7.
Indoor Air ; 30(1): 108-116, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608493

RESUMEN

Exposure to particulate contaminants can cause serious adverse health effects. Deposition on the facial mucosa is an important path of exposure, but it is difficult to conduct direct dose measurement on real human subjects. In this study, we propose an in vitro method to assess the administered doses of micron-sized particles on the eyes and lips in which computed tomographic scanning and three-dimensional printing were used to create a model that includes a face, oropharynx, trachea, the first five generations of bronchi, and lung volume. This realistic model of a face and airway was exposed to monodispersed fluorescent particles released from an incoming jet. The administered dose of particles deposited upon the eyes and lips, as quantified by fluorescence intensity, was determined via a standard wiping protocol. The results show that, in this scenario, the administered doses normalized by source were 2.15%, 1.02%, 0.88%, 2.13%, and 1.55% for 0.6-, 1.0-, 2.0-, 3.0-, and 5.0-µm particles, respectively. The administered dose of large particles on the mucosa within a given exposure time has great significance. Moreover, the lips suffer a much greater risk of exposure than the eyes and account for more than 80% of total facial mucosa deposition. Our study provides a fast and economical method to assess the administered dose on the facial mucosa on an individual basis.


Asunto(s)
Exposición por Inhalación/análisis , Material Particulado/análisis , Aerosoles , Bronquios , Relación Dosis-Respuesta a Droga , Cara , Humanos , Exposición por Inhalación/estadística & datos numéricos , Pulmón , Modelos Biológicos , Membrana Mucosa , Tamaño de la Partícula , Impresión Tridimensional
8.
Build Environ ; 180: 107106, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32834417

RESUMEN

By March 31, 2020, COVID-19 had spread to more than 200 countries. Over 750,000 confirmed cases were reported, leading to more than 36,000 deaths. In this study, we analysed the efficiency of various intervention strategies to prevent infection by the virus, SARS-CoV-2, using an agent-based SEIIR model, in the fully urbanised city of Shenzhen, Guangdong Province, China. Shortening the duration from symptom onset to hospital admission, quarantining recent arrivals from Hubei Province, and letting symptomatic individuals stay at home were found to be the three most important interventions to reduce the risk of infection in Shenzhen. The ideal time window for a mandatory quarantine of arrivals from Hubei Province was between 10 January and January 17, 2020, while the ideal time window for local intervention strategies was between 15 and 22 January. The risk of infection could have been reduced by 50% if all symptomatic individuals had immediately gone to hospital for isolation, and by 35% if a 14-day quarantine for arrivals from Hubei Province had been introduced one week earlier. Intervention strategies implemented in Shenzhen were effective, and the spread of infection would be controlled even if the initial basic reproduction number had doubled. Our results may be useful for other cities when choosing their intervention strategies to prevent outbreaks of COVID-19.

9.
PLoS Pathog ; 13(4): e1006301, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28403192

RESUMEN

Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM) and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.


Asunto(s)
Proteínas del Helminto/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Glicosilación , Proteínas del Helminto/genética , Proteínas del Helminto/inmunología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Transporte de Proteínas , Proteolisis , Tylenchoidea/genética , Tylenchoidea/inmunología
10.
J Environ Manage ; 238: 64-71, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30849599

RESUMEN

In China, one of the major causes of energy performance gaps observed in green office buildings is the incompetent operations management, which is not distinguished from that of traditional buildings on both facilities and occupants. In this paper, a system dynamics model was established to simulate the interactions (primarily through communications) between facility managers and occupants and to find out targeted operations management strategies to narrow energy performance gaps. The model identifies different types of occupants and uses the Monte Carlo method to address the uncertainty between energy consumption and indoor environment quality satisfaction of occupants. Through a comparison of scenarios in which different types of occupants were each involved, differences in energy performance gaps were found and more-targeted operations management strategies were tailored. The model was applied to a specific case in China. The results indicate that facility managers could pay less attention to austerity occupants while paying more attention to communications with standard occupants to enhance their energy-saving awareness. The results also reveal that the wasteful occupants have the most potential for narrowing the gaps, which can be realized by combining communications and the heating, ventilation and air conditioning (HVAC) system equipment with zonal control.


Asunto(s)
Contaminación del Aire Interior , Aire Acondicionado , China , Calefacción , Ventilación
11.
J Vis ; 18(8): 11, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30372760

RESUMEN

Studies of perceptual learning have revealed a great deal of plasticity in adult humans. In this study, we systematically investigated the effects and mechanisms of several forms (trial-by-trial, block, and session rewards) and levels (no, low, high, subliminal) of monetary reward on the rate, magnitude, and generalizability of perceptual learning. We found that high monetary reward can greatly promote the rate and boost the magnitude of learning and enhance performance in untrained spatial frequencies and eye without changing interocular, interlocation, and interdirection transfer indices. High reward per se made unique contributions to the enhanced learning through improved internal noise reduction. Furthermore, the effects of high reward on perceptual learning occurred in a range of perceptual tasks. The results may have major implications for the understanding of the nature of the learning rule in perceptual learning and for the use of reward to enhance perceptual learning in practical applications.


Asunto(s)
Aprendizaje/fisiología , Recompensa , Percepción Visual/fisiología , Humanos , Transferencia de Experiencia en Psicología , Adulto Joven
12.
New Phytol ; 209(3): 1159-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26484653

RESUMEN

Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism.


Asunto(s)
Arabidopsis/parasitología , Depuradores de Radicales Libres/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Teorema de Bayes , Clonación Molecular , Simulación por Computador , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Genes de Helminto , Genes de Plantas , Proteínas del Helminto/química , Proteínas del Helminto/genética , Peróxido de Hidrógeno/metabolismo , Mutación/genética , Parásitos , Moléculas de Patrón Molecular Asociado a Patógenos , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Unión Proteica , Dominios Proteicos , Interferencia de ARN , Tylenchoidea/genética , Regulación hacia Arriba
13.
Plant Dis ; 100(5): 877-883, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-30686144

RESUMEN

Tylenchulus semipenetrans is an economically important plant-parasitic nematode occurring in all citrus-producing regions of the world and causing a disease called "slow decline". For the rapid detection of this nematode, a loop-mediated isothermal amplification (LAMP) assay was developed, based on the ribosomal DNA internal transcribed spacer sequence. The optimal condition for the LAMP assay was 65°C for 50 min. The LAMP products were confirmed using conventional polymerase chain reaction (PCR) and restriction analysis with the BamHI enzyme, and by adding SYBR Green I to the LAMP products for visual inspection. The LAMP assay was highly specific for the detection of T. semipenetrans populations from different geographical origins. It was also sensitive, detecting a tenth of the DNA from an individual specimen of T. semipenetrans, which was 10 times more sensitive than conventional PCR. The LAMP protocol was applied to natural citrus rhizosphere soil samples from several orchards in China and the results were fast, sensitive, robust, and accurate. This study is the first to provide a diagnostic tool for T. semipenetrans using DNA extracted directly from citrus rhizosphere soils. This LAMP assay could be used as a practical molecular tool to identify T. semipenetrans and diagnose slow decline disease, even in remote locations.

14.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475576

RESUMEN

Meloidogyne javanica is one of the most widespread and economically important sedentary endoparasites. In this study, a comparative transcriptome analysis of M. javanica between pre-parasitic second-stage juveniles (Pre-J2) and parasitic juveniles (Par-J3/J4) was conducted. A total of 48,698 unigenes were obtained, of which 18,826 genes showed significant differences in expression (p < 0.05). In the differentially expressed genes (DEGs) from transcriptome data at Par-J3/J4 and Pre-J2, a large number of unigenes were annotated to the C-type lectin (CTL, Mg01965), the cathepsin L-like protease (Mi-cpl-1), the venom allergen-like protein (Mi-mps-1), Map-1 and the cellulase (endo-ß-1,4-glucanase). Among seven types of lectins found in the DEGs, there were 10 CTLs. The regulatory roles of Mj-CTL-1, Mj-CTL-2 and Mj-CTL-3 in plant immune responses involved in the parasitism of M. javanica were investigated. The results revealed that Mj-CTL-2 could suppress programmed cell death (PCD) triggered by Gpa2/RBP-1 and inhibit the flg22-stimulated ROS burst. In situ hybridization and developmental expression analyses showed that Mj-CTL-2 was specifically expressed in the subventral gland of M. javanica, and its expression was up-regulated at Pre-J2 of the nematode. In addition, in planta silencing of Mj-CTL-2 substantially increased the plant resistance to M. javanica. Moreover, yeast co-transformation and bimolecular fluorescence complementation assay showed that Mj-CTL-2 specifically interacted with the Solanum lycopersicum catalase, SlCAT2. It was demonstrated that M. javanica could suppress the innate immunity of plants through the peroxide system, thereby promoting parasitism.

15.
Front Plant Sci ; 15: 1357141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481400

RESUMEN

The migratory endoparasitic phytonematodes Bursaphelenchus xylophilus is the causal agent of pine wilt disease and causes significant economic damage to pine forests in China. Effectors play a key role in the successful parasitism of plants by phytonematodes. In this study, 210 genes obtained by transcriptomics analyses were found to be upregulated in B. xylophilus infecting Pinus massoniana that were not functionally annotated nor reported previously in B. xylophilus infecting P. thunbergii. Among these differentially expressed genes, a novel effector, BxICD1, that could induce cell death in the extracellular space of Nicotiana benthamiana was identified. BxICD1 was upregulated in the early stages of infection, as shown by RT-qPCR analyses. In situ hybridization analysis showed that BxICD1 was expressed in the esophageal gland of nematodes. The yeast signal sequence trap system indicated that BxICD1 possessed an N-terminal signal peptide with secretion functionality. Using an Agrobacterium-mediated transient expression system, it was demonstrated that the cell death-inducing activity of BxICD1 was dependent on N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1). Finally, BxICD1 contributed to B. xylophilus virulence and migration in host pine trees, as demonstrated by RNAi silencing assays. These findings indicate that BxICD1 both induces plant cell death and also contributes to nematode virulence and migration in P. massonian.

16.
Mol Plant Microbe Interact ; 26(1): 55-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22757624

RESUMEN

Secretory effector proteins expressed within the esophageal glands of root-knot nematodes (Meloidogyne spp.) are thought to play key roles in nematode invasion of host roots and in formation of feeding sites necessary for nematodes to complete their life cycle. In this study, a novel effector protein gene designated as Mj-nulg1a, which is expressed specifically within the dorsal gland of Meloidogyne javanica, was isolated through suppression subtractive hybridization. Southern blotting and BLAST search analyses showed that Mj-nulg1a is unique for Meloidogyne spp. A real-time reverse-transcriptase polymerase chain reaction assay showed that expression of Mj-nulg1a was upregulated in parasitic second-stage juveniles and declined in later parasitic stages. MJ-NULG1a contains two putative nuclear localization signals and, consistently, in planta immunolocalization analysis showed that MJ-NULG1a was localized in the nuclei of giant cells during nematode parasitism. In planta RNA interference targeting Mj-nulg1a suppressed the expression of Mj-nulg1a in nematodes and attenuated parasitism ability of M. javanica. In contrast, transgenic Arabidopsis expressing Mj-nulg1a became more susceptible to M. javanica infection than wild-type control plants. These results depict a novel nematode effector that is targeted to giant cell nuclei and plays a critical role in M. javanica parasitism.


Asunto(s)
Arabidopsis/parasitología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Helminto/genética , Enfermedades de las Plantas/parasitología , Tylenchoidea/genética , Animales , Anticuerpos Antihelmínticos , Secuencia de Bases , Núcleo Celular/metabolismo , ADN de Helmintos/química , ADN de Helmintos/genética , Susceptibilidad a Enfermedades , Células Gigantes/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Solanum lycopersicum/citología , Solanum lycopersicum/parasitología , Datos de Secuencia Molecular , Señales de Localización Nuclear , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN de Helminto/genética , Análisis de Secuencia de ADN , Tylenchoidea/crecimiento & desarrollo , Tylenchoidea/fisiología , Tylenchoidea/ultraestructura , Regulación hacia Arriba
17.
Exp Parasitol ; 135(1): 15-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23747693

RESUMEN

This study describes the molecular and biochemical characterization of the ß-1,4-endoglucanase gene (Mj-eng-3) from the root knot nematode Meloidogyne javanica. A 2156-bp genomic DNA sequence of Mj-eng-3 containing six introns was obtained. Mj-eng-3 was localized in the subventral esophageal glands of M. javanica juveniles by in situ hybridization. Real-time RT-PCR assay showed that the highest transcriptional level of Mj-eng-3 occurred in pre-parasitic second-stage juveniles, and this high expression persisted in parasitic second-stage juveniles. Recombinant MJ-ENG-3 degraded carboxymethylcellulose and optimum enzyme activity at 40°C and pH 8.0. EDTA, Mg(2+), Mn(2+), Ca(2+), Co(2+), and Cu(2+) did not affect the activity of MJ-ENG-3; however, Zn(2+) and Fe(2+) inhibited MJ-ENG-3 enzyme activity. In planta Mj-eng-3 RNAi assay displayed a reduction in the number of nematodes and galls in transgenic tobacco roots. These results suggested that MJ-ENG-3 could be secreted by M. javanica to degrade the cellulose of plant cell walls to facilitate its entry and migration during the early stages of parasitism.


Asunto(s)
Celulasa/genética , Celulasa/metabolismo , Nicotiana/parasitología , Tylenchoidea/enzimología , Tylenchoidea/genética , Animales , ADN Complementario/química , ADN de Helmintos/química , Exones , Regulación del Desarrollo de la Expresión Génica , Concentración de Iones de Hidrógeno , Hibridación in Situ , Intrones , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Interferencia de ARN , ARN de Helminto/genética , Alineación de Secuencia , Temperatura , Tylenchoidea/crecimiento & desarrollo
18.
Front Plant Sci ; 14: 1134653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998699

RESUMEN

CRISPR crops carrying a mutation in susceptibility (S) genes provide an effective strategy for controlling plant disease, because they could be 'transgene-free' and commonly have more broad-spectrum and durable type of resistance. Despite their importance, CRISPR/Cas9-mediated editing of S genes for engineering resistance to plant-parasitic nematode (PPN) disease has not been reported. In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of the S gene rice copper metallochaperone heavy metal-associated plant protein 04 (OsHPP04), and successfully obtained genetically stable homozygous rice mutants with or without transgenic elements. These mutants confer enhanced resistance to the rice root-knot nematode (Meloidogyne graminicola), a major plant pathogenic nematode in rice agriculture. Moreover, the plant immune responses triggered by flg22, including reactive oxygen species burst, defence-related genes expression and callose deposition, were enhanced in the 'transgene-free' homozygous mutants. Analysis of rice growth and agronomic traits of two independent mutants showed that there are no obvious differences between wild-type plants and mutants. These findings suggest that OsHPP04 may be an S gene as a negative regulator of host immunity and genetic modification of S genes through the CRISPR/Cas9 technology can be used as a powerful tool to generate PPN resistant plant varieties.

19.
ACS Omega ; 8(4): 4398-4409, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743038

RESUMEN

Nanodiamonds (NDs) are emerging with great potential in biomedical applications like biomarking through fluorescence and magnetic resonance imaging (MRI), targeted drug delivery, and cancer therapy. The magnetic and optical properties of NDs could be tuned by selective doping. Therefore, we report multifunctional manganese-incorporated NDs (Mn-NDs) fabricated by Mn ion implantation. The fluorescent properties of Mn-NDs were tuned by inducing the defects by ion implantation and enhancing the residual nitrogen vacancy density achieved by a two-step annealing process. The cytotoxicity of Mn-NDs was investigated using NCTC clone 929 cells, and the results revealed no cytotoxicity effect. Mn-NDs have demonstrated dual mode contrast enhancement for both T 1- and T 2-weighted in vitro MR imaging. Furthermore, Mn-NDs have illustrated a significant increase in longitudinal relaxivity (fivefold) and transversal relaxivity (17-fold) compared to the as-received NDs. Mn-NDs are employed to investigate their ability for in vivo MR imaging by intraperitoneal (ip) injection of Mn-NDs into mice with liver tumors. After 2.5 h of ip injection, the enhancement of contrast in T 1- and T 2-weighted images has been observed via the accumulation of Mn-NDs in liver tumors of mice. Therefore, Mn-NDs have great potential for in vivo imaging by MR imaging in cancer therapy.

20.
China CDC Wkly ; 4(14): 298-301, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35433092

RESUMEN

What is already known about this topic?: Aerosol transmission is one route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, uncertainty remains on the threshold of ventilation rate in its occurrence. What is added by this report?: Based on two cases in Shandong Province and Hubei Province, the effect of wearing masks and the minimum ventilation required to reduce coronavirus disease 2019 (COVID-19) aerosol transmission was determined. What are the implications for public health practice?: No masking and low ventilation rates lead to a relatively high contribution of aerosols to COVID-19 transmission. Thus, public awareness of wearing masks should increase and the ventilation rate should be sufficiently higher than the minimum required ventilation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA