RESUMEN
Cytokine and antiangiogenic gene therapies have proved effective in implanted hepatocellular carcinoma (HCC) models in which small tumor burdens were established in small rodents. These models, however, may not reflect human HCCs, which are frequently detected at a stage when tumors are large and multifocal. In addition, HCC in patients is often associated with viral hepatitis. To investigate the effectiveness of a mixture type of gene therapy strategy on large tumor burdens, we used the woodchuck model in which woodchuck hepatitis virus-induced HCCs are large and multifocal, simulating the conditions in humans. Adenoviruses encoding antiangiogenic factors (pigment epithelium-derived factor and endostatin) or cytokines (GM-CSF and IL-12) were delivered via the hepatic artery separately or in combination into woodchuck livers bearing HCCs. Our results showed that the mixture type of strategy, which contained two cytokines and two antiangiogenic factors, had better antitumor effects on large tumors as compared with monotherapy either with antiangiogenic or cytokine genes. The immunotherapy recruited significant levels of CD3(+) T cells that infiltrated the tumors, whereas the antiangiogenesis-based therapy significantly reduced tumor vasculature. The mixture type of gene therapy achieved both effects. In addition, it induced high levels of natural killer cells and apoptotic cells and reduced the levels of immunosuppressive effectors in the tumor regions. Hence, antiangiogenic therapy may provide the advantage of reducing immune tolerance in large tumors, making them more vulnerable to the immune reactions. Our study implies that in the future, the combination therapy may prove effective for the treatment of patients with advanced HCC.
Asunto(s)
Terapia Genética/métodos , Inmunoterapia/métodos , Neoplasias Hepáticas Experimentales/terapia , Enfermedades de los Roedores/terapia , Alanina Transaminasa/sangre , Inhibidores de la Angiogénesis/genética , Inhibidores de la Angiogénesis/metabolismo , Animales , Aspartato Aminotransferasas/sangre , Terapia Combinada , Endostatinas/genética , Endostatinas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Hepatitis B/complicaciones , Hepatitis B/virología , Virus de la Hepatitis B de la Marmota/crecimiento & desarrollo , Humanos , Neoplasias Hepáticas Experimentales/sangre , Neoplasias Hepáticas Experimentales/etiología , Marmota , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Enfermedades de los Roedores/sangre , Enfermedades de los Roedores/etiología , Serpinas/genética , Serpinas/metabolismo , Resultado del Tratamiento , Carga Tumoral , gamma-Glutamiltransferasa/sangreRESUMEN
The metastatic tumor antigen 1 (MTA1) protein is associated with tumor invasiveness and poor prognosis in patients with hepatocellular carcinoma (HCC), particularly in those with hepatitis B virus (HBV)-related HCC. Chronically woodchuck hepatitis virus (WHV)-infected woodchuck is an ideal animal model for studying the pathogenesis of HBV-associated liver diseases, including HCC. To investigate the roles of MTA1 in HBV-associated hepatocarcinogenesis in the woodchuck model, we cloned the woodchuck MTA1 (wk-MTA1) complementary (c)DNA and characterized its molecular functions. The sequence and organization of the wk-MTA1 protein were highly conserved among different species. Similar to its expression in human HCC, wk-MTA1 was upregulated in woodchuck HCC, as determined at RNA and protein levels. Furthermore, an MTA1-spliced variant, wk-MTA1dE4, was overexpressed in woodchuck HCC, and it was attributed to approximately 50% of the total transcripts. The percentage of wk-MTA1dE4-overexpressed woodchuck HCCs was higher than that of the total wk-MTA1-overexpressed HCCs (77.8% vs 61.1%) and wk-MTA1dE4 may represent a more sensitive marker than the total wk-MTA1 in woodchuck HCC. We overexpressed or knocked down wk-MTA1 in a woodchuck HCC cell line and demonstrated that wk-MTA1 could interact with the WHV X protein (WHx) and play indispensable roles in WHx-mediated NF-κB activation and tumor cell migration- and invasion-promoting activities. In conclusion, our results support the hypothesis that woodchuck HCC recapitulates HBV-associated HCC with respect to the molecular characteristics of MTA1 and provides new clues for conducting mechanistic studies of MTA1 in HBV-associated hepatocarcinogenesis, including the possible clinical significance of wk-MTA1dE4.