RESUMEN
Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.
Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMEN
Dimethylated histone H3 Lys9 (H3K9me2) is a conserved heterochromatic mark catalyzed by SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) methyltransferases in plants. However, the mechanism underlying the locus specificity of SUVH enzymes has long been elusive. Here, we show that a conserved N-terminal motif is essential for SUVH6-mediated H3K9me2 deposition in planta. The SUVH6 N-terminal peptide can be recognized by the bromo-adjacent homology (BAH) domain of the RNA- and chromatin-binding protein ANTI-SILENCING 1 (ASI1), which has been shown to function in a complex to confer gene expression regulation. Structural data indicate that a classic aromatic cage of ASI1-BAH domain specifically recognizes an arginine residue of SUVH6 through extensive hydrogen bonding interactions. A classic aromatic cage of ASI1 specifically recognizes an arginine residue of SUVH6 through extensive cation-π interactions, playing a key role in recognition. The SUVH6-ASI1 module confers locus-specific H3K9me2 deposition at most SUVH6 target loci and gives rise to distinct regulation of gene expression depending on the target loci, either conferring transcriptional silencing or posttranscriptional processing of mRNA. More importantly, such mechanism is conserved in multiple plant species, indicating a coordinated evolutionary process between SUVH6 and ASI1. In summary, our findings uncover a conserved mechanism for the locus specificity of H3K9 methylation in planta. These findings provide mechanistic insights into the delicate regulation of H3K9 methylation homeostasis in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Arginina/metabolismo , CatálisisRESUMEN
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Asunto(s)
Plantas , Factores de Transcripción , Vocabulario , Cromatina , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/genéticaRESUMEN
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Asunto(s)
Poliadenilación , Triticum , Poliadenilación/genética , Triticum/genética , Triticum/metabolismo , Sequías , Transcriptoma/genética , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genéticaRESUMEN
Eukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on Arabidopsis, HDA6 (one of HDACs) was found to be a critical part of many biological processes. Here, we report that HDA6 affects mRNA polyadenylation in Arabidopsis Poly(A) sites of up-regulated transcripts are closer to the histone acetylation peaks in hda6 compared to the wild-type Col-0. HDA6 is required for the deacetylation of histones around DNA on nucleosomes, which solely coincides with up-regulated or uniquely presented poly(A) sites in hda6 Furthermore, defective HDA6 results in an overrepresentation of the canonical poly(A) signal (AAUAAA) usage. Chromatin loci for generating AAUAAA-type transcripts have a comparatively low H3K9K14ac around poly(A) sites when compared to other noncanonical poly(A) signal-containing transcripts. These results indicate that HDA6 regulates polyadenylation in a histone deacetylation-dependent manner in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Poliadenilación , Regiones no Traducidas 3' , Acetilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Desacetilasas/genética , Mutación , ARN Mensajero/químicaRESUMEN
The dynamic choice of different polyadenylation sites in a gene is referred to as alternative polyadenylation, which functions in many important biological processes. Large-scale messenger RNA 3' end sequencing has revealed that cleavage sites for polyadenylation are presented with microheterogeneity. To date, the conventional determination of polyadenylation site clusters is subjective and arbitrary, leading to inaccurate annotations. Here, we present a weighted density peak clustering method, QuantifyPoly(A), to accurately quantify genome-wide polyadenylation choices. Applying QuantifyPoly(A) on published 3' end sequencing datasets from both animals and plants, their polyadenylation profiles are reshaped into myriads of novel polyadenylation site clusters. Most of these novel polyadenylation site clusters show significantly dynamic usage across different biological samples or associate with binding sites of trans-acting factors. Upstream sequences of these clusters are enriched with polyadenylation signals UGUA, UAAA and/or AAUAAA in a species-dependent manner. Polyadenylation site clusters also exhibit species specificity, while plants ones generally show higher microheterogeneity than that of animals. QuantifyPoly(A) is broadly applicable to any types of 3' end sequencing data and species for accurate quantification and construction of the complex and dynamic polyadenylation landscape and enables us to decode alternative polyadenylation events invisible to conventional methods at a much higher resolution.
Asunto(s)
Poli A/metabolismo , Animales , Arabidopsis/metabolismo , Oryza/metabolismo , PoliadenilaciónRESUMEN
A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Poliadenilación/genética , Señales de Poliadenilación de ARN 3'/genética , ARN Mensajero/genética , Transcriptoma/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3'/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Redes Reguladoras de Genes , Mutación , Fenotipo , Raíces de Plantas/metabolismo , Unión Proteica , Dominios Proteicos/genética , Repeticiones WD40/genéticaRESUMEN
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/metabolismo , Metilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Epigénesis Genética , Dominios PR-SET , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.
Asunto(s)
MicroARNs , Oryza , Regulación de la Expresión Génica de las Plantas , Heterocromatina/genética , MicroARNs/genética , Oryza/genética , Polen/genética , PoliadenilaciónRESUMEN
Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.
Asunto(s)
Arabidopsis/genética , Poliadenilación , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética , TranscriptomaRESUMEN
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Asunto(s)
Epigénesis Genética/genética , Empalme Alternativo/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Heterocromatina/genética , Poliadenilación/genética , Poliadenilación/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that regulates gene expression through mRNA metabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativa L.). However, little is known about the APA-mediated regulation underlying the distinct characteristics between two major rice subspecies, indica and japonica. Using a poly(A)-tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage between indica and japonica, and extensive differentiation in APA profiles was detected genome-wide. Genes with subspecies-specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance of indica and cold-stress tolerance of japonica. In most tissues, differential usage of APA sites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000-seed weight. In leaves of the booting stage, APA site-switching genes displayed global shortening of 3' untranslated regions with increased expression in indica compared with japonica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis in indica than in japonica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest that APA may be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post-transcriptional genetic basis underlying the divergence of rice traits.
Asunto(s)
Genes de Plantas/genética , Oryza/genética , Oryza/metabolismo , Poliadenilación , Aclimatación , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Semillas , Estrés Fisiológico , TranscriptomaRESUMEN
Auxin is widely involved in plant growth and development. However, the molecular mechanism on how auxin carries out this work is unclear. In particular, the effect of auxin on pre-mRNA post-transcriptional regulation is mostly unknown. By using a poly(A) tag (PAT) sequencing approach, mRNA alternative polyadenylation (APA) profiles after auxin treatment were revealed. We showed that hundreds of poly(A) site clusters (PACs) are affected by auxin at the transcriptome level, where auxin reduces PAC distribution in 5'-untranslated region (UTR), but increases in the 3'UTR. APA site usage frequencies of 42 genes were switched by auxin, suggesting that auxin affects the choice of poly(A) sites. Furthermore, poly(A) signal selection was altered after auxin treatment. For example, a mutant of poly(A) signal binding protein CPSF30 showed altered sensitivity to auxin treatment, indicating interactions between auxin and the poly(A) signal recognition machinery. We also found that auxin activity on lateral root development is likely mediated by altered expression of ARF7, ARF19 and IAA14 through poly(A) site switches. Our results shed light on the molecular mechanisms of auxin responses relative to its interactions with mRNA polyadenylation.
Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poliadenilación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Poli A/genética , ARN Mensajero/genética , ARN de Planta/genéticaRESUMEN
CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.
Asunto(s)
Arabidopsis/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poli A/metabolismo , Transcripción Genética , Arabidopsis/fisiología , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Perfilación de la Expresión Génica , Poliadenilación/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genéticaRESUMEN
BACKGROUND: Panax japonicus C. A. Mey. is a rare traditional Chinese herbal medicine that uses ginsenosides as its main active ingredient. Rice does not produce ginsenosides because it lacks a key rate-limiting enzyme (ß-amyrin synthase, ßAS); however, it produces a secondary metabolite, 2,3-oxidosqualene, which is a precursor for ginsenoside biosynthesis. RESULTS: In the present study, the P. japonicus ßAS gene was transformed into the rice cultivar 'Taijing 9' using an Agrobacterium-mediated approach, resulting in 68 rice transgenic plants of the T0 generation. Transfer-DNA (T-DNA) insertion sites in homozygous lines of the T2 generation were determined by using high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) and were found to vary among the tested lines. Approximately 1-2 copies of the ßAS gene were detected in transgenic rice plants. Real-time PCR and Western blotting analyses showed that the transformed ßAS gene could be overexpressed and ß-amyrin synthase could be expressed in rice. HPLC analysis showed that the concentration of oleanane-type sapogenin oleanolic acid in transgenic rice was 8.3-11.5 mg/100 g dw. CONCLUSIONS: The current study is the first report on the transformation of P. japonicus ßAS gene into rice. We have successfully produced a new rice germplasm, "ginseng rice", which produces oleanane-type sapogenin.
Asunto(s)
Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Oryza/genética , Panax/enzimología , Proteínas de Plantas/metabolismo , ADN Bacteriano/metabolismo , Transferasas Intramoleculares/genética , Ácido Oleanólico/biosíntesis , Oryza/metabolismo , Panax/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Plásmidos/genéticaRESUMEN
The genomes of two rice cultivars, Nipponbare and 93-11, have been well studied. However, there is little available genetic information about nutraceutical rice cultivars. To remedy this situation, the present study aimed to provide a basic genetic landscape of nutraceutical rice. The genome of Black-1, a black pericarp rice containing higher levels of anthocyanins, flavonoids, and a more potent antioxidant capacity, was sequenced at ≥30 × coverage using Solexa sequencing technology. The complete sequences of Black-1 genome shared more consensus sequences with indica cultivar 93-11 than with Nipponbare. With reference to the 93-11 genome, Black-1 contained 675,207 single-nucleotide polymorphisms, 43,130 insertions and deletions (1-5 bp), 1,770 copy number variations, and 10,911 presence/absence variations. These variations were observed to reside preferentially in Myb domains, NB-ARC domains and kinase domains, providing clues to the diversity of biological functions or secondary metabolisms in this cultivar. Intriguingly, 496 unique genes were identified by comparing it with the genomes of these two rice varieties; among the genes, 119 genes participate in the biosynthesis of secondary metabolites. Furthermore, several unique genes were predicted to be involved in the anthocyanins synthesis pathway. The genome-wide landscape of Black-1 uncovered by this study represents a valuable resource for further studies and for breeding nutraceutical rice varieties.
Asunto(s)
Biología Computacional , Variaciones en el Número de Copia de ADN/genética , Genoma de Planta/genética , Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Secuencia de Bases , Análisis por Conglomerados , ADN de Plantas/química , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Suplementos Dietéticos , Mutación INDEL , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
We have designed photodetectors and UV field emitters based on a combination of ZnO nanowires/nanorods (ZNRs) and bilayer diamond films in a metal-semiconductor-metal (MSM) structure. The ZNRs were fabricated on different diamond films and systematic investigations showed an ultra-high photoconductive response from ZNRs prepared on ultrananocrystalline diamond (UNCD) operating at a lower voltage of 2â V. We found that the ZNRs/UNCD photodetector (PD) has improved field emission properties and a reduced turn-on field of 2.9â V µm(-1) with the highest electron field emission (EFE) by simply illuminating the sample with ultraviolet (UV) light. The photoresponse (Iphoto /Idark ) behavior of the ZNRs/UNCD PD exhibits a much higher photoresponse (912) than bare ZNRs (229), ZNRs/nanocrystalline diamond (NCD; 518), and ZNRs/microcrystalline diamond (MCD; 325) under illumination at λ=365â nm. A photodetector with UNCD films offers superior stability and a longer lifetime compared with carbon materials and bare ZNRs. The lifetime stability of the ZNRs/UNCD-based device is about 410â min, which is markedly superior to devices that use bare ZNRs (92â min). The ZNRs/UNCD PD possesses excellent photoresponse properties with improved lifetime and stability; in addition, ZNRs/UNCD-based UV emitters have great potential for applications such as cathodes in flat-panel displays and microplasma display devices.
RESUMEN
Sparse view computed tomography (SVCT) aims to reduce the number of X-ray projection views required for reconstructing the cross-sectional image of an object. While SVCT significantly reduces X-ray radiation dose and speeds up scanning, insufficient projection data give rise to issues such as severe streak artifacts and blurring in reconstructed images, thereby impacting the diagnostic accuracy of CT detection. To address this challenge, a dual-domain reconstruction network incorporating multi-level wavelet transform and recurrent convolution is proposed in this paper. The dual-domain network is composed of a sinogram domain network (SDN) and an image domain network (IDN). Multi-level wavelet transform is employed in both IDN and SDN to decompose sinograms and CT images into distinct frequency components, which are then processed through separate network branches to recover detailed information within their respective frequency bands. To capture global textures, artifacts, and shallow features in sinograms and CT images, a recurrent convolution unit (RCU) based on convolutional long and short-term memory (Conv-LSTM) is designed, which can model their long-range dependencies through recurrent calculation. Additionally, a self-attention-based multi-level frequency feature normalization fusion (MFNF) block is proposed to assist in recovering high-frequency components by aggregating low-frequency components. Finally, an edge loss function based on the Laplacian of Gaussian (LoG) is designed as the regularization term for enhancing the recovery of high-frequency edge structures. The experimental results demonstrate the effectiveness of our approach in reducing artifacts and enhancing the reconstruction of intricate structural details across various sparse views and noise levels. Our method excels in both performance and robustness, as evidenced by its superior outcomes in numerous qualitative and quantitative assessments, surpassing contemporary state-of-the-art CNNs or Transformer-based reconstruction methods.
Asunto(s)
Tomografía Computarizada por Rayos X , Análisis de Ondículas , ArtefactosRESUMEN
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the strawberry (Fragaria vesca) remains unclear. Our research has identified FveAFB5, a potential auxin receptor, as a key player in the development and auxin responses of woodland strawberry diploid variety Hawaii 4. FveAFB5 positively influences lateral root development, plant height, and fruit development, while negatively regulating shoot branching. Moreover, the mutation of FveAFB5 confers strong resistance to the auxinic herbicide picloram, compared to dicamba and quinclorac. Transcriptome analysis suggests that FveAFB5 may initiate auxin and abscisic acid signaling to inhibit growth in response to picloram. Therefore, FveAFB5 likely acts as an auxin receptor involved in regulating multiple processes related to strawberry growth and development.
RESUMEN
Precise regulation of gene expression is crucial for plant survival. As a cotranscriptional regulatory mechanism, pre-mRNA polyadenylation is essential for fine-tuning gene expression. Polyadenylation can be alternatively projected at various sites of a transcript, which contributes to transcriptome diversity. Epigenetic modification is another mechanism of transcriptional control. Recent studies have uncovered crosstalk between cotranscriptional polyadenylation processes and both epigenomic and epitranscriptomic markers. Genetic analyses have demonstrated that DNA methylation, histone modifications, and epitranscriptomic modification are involved in regulating polyadenylation in plants. Here we summarize current understanding of the links between epigenetics and polyadenylation and their novel biological efficacy for plant development and environmental responses. Unresolved issues and future directions are discussed to shed light on the field.