Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Sci Technol ; 56(2): 1423-1432, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34961321

RESUMEN

Atmospheric mercury (Hg) cycling is sensitive to climate-driven changes, but links with various teleconnections remain unestablished. Here, we revealed the El Niño-Southern Oscillation (ENSO) influence on gaseous elemental mercury (GEM) concentrations recorded at a background station in East Asia using the Hilbert-Huang transform (HHT). The timing and magnitude of GEM intrinsic variations were clearly distinguished by ensemble empirical mode decomposition (EEMD), revealing the amplitude of the GEM concentration interannual variability (IAV) is greater than that for diurnal and seasonal variability. We show that changes in the annual cycle of GEM were modulated by significant IAVs at time scales of 2-7 years, highlighted by a robust GEM IAV-ENSO relationship of the associated intrinsic mode functions. With confirmation that ENSO modulates the GEM annual cycle, we then found that weaker GEM annual cycles may have resulted from El Niño-accelerated Hg evasion from the ocean. Furthermore, the relationship between ENSO and GEM is sensitive to extreme events (i.e., 2015-2016 El Niño), resulting in perturbation of the long-term trend and atmospheric Hg cycling. Future climate change will likely increase the number of extreme El Niño events and, hence, could alter atmospheric Hg cycling and influence the effectiveness evaluation of the Minamata Convention on Mercury.


Asunto(s)
El Niño Oscilación del Sur , Mercurio , Cambio Climático , Asia Oriental , Mercurio/análisis
2.
J Sep Sci ; 39(8): 1489-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26924196

RESUMEN

An automated gas chromatographic system aimed at performing unattended measurements of ambient volatile organic compounds was configured and tested. By exploiting various off-the-shelf components, the thermal desorption unit was easily assembled and can be connected with any existing commercial gas chromatograph in the laboratory to minimize cost. The performance of the complete thermal desorption gas chromatographic system was assessed by analyzing a standard mixture containing 56 target nonmethane hydrocarbons from C2 -C12 at sub-ppb levels. Particular attention was given to the enrichment efficiency of the C2 compounds, such as ethane (b.p. = -88.6°C) and ethylene (b.p. = -104.2°C), due to their extremely high volatilities. Quality assurance was performed in terms of the linearity, precision and limits of detection of the target compounds. To further validate the system, field measurements of target compounds in ambient air were compared with those of a commercial total hydrocarbon analyzer and a carbon monoxide analyzer. Highly coherent results from the three instruments were observed during a two-month period of synchronized measurements. Moreover, the phenomenon of opposite diurnal variations between the biogenic isoprene and anthropogenic species was exploited to help support the field applicability of the thermal desorption gas chromatographic method.

3.
Chemosphere ; : 143095, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39146995

RESUMEN

The presence of organic compounds on the particulate matter (PM) or aerosols can arise from the condensation of gaseous organic compounds on the existing aerosols, or from organic precursors to form secondary organic aerosols (SOA) through photochemistry. The objective of this study is to characterize organic constituents on aerosols relevant to their emission sources and the key compounds revealing the evolution of aerosols with the use of a novel analytical technique. A time-of-flight mass spectrometry (TOFMS) coupled with comprehensive two-dimensional gas chromatography (GC×GC) was developed using a flow type of modulator instead of a thermal type as a prelude to field applications without the need for cryogen. The methodology of GC×GC-TOFMS is discussed in this study in detail. Since the coarse PM (PM10-2.5) may exhibit with a relatively high OC content compared to PM2.5, the GC×GC results have been obtained by analyzing PM10 samples collected in parallel with OC/EC analysis of PM2.5 samples at the Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2,862 m ASL) as the high-mountain background site in East Asia. We found that the organic analytes were in a majority in the range of 12 - 30 carbon numbers falling in the category of semi-volatile organic compounds (SVOCs) with 43 compounds of alcohol, aldehyde, ketone, and ester varieties if excluding alkanes. Intriguingly, trace amounts of plasticizers and phosphorus flame retardants such as phthalates (PAEs) and triphenyl phosphate (TPP) were also found, likely originating from regions involved in open burning of household solid waste in Southeast Asia or e-waste recycling in southern China and along the long-range transport route. Compounds such as these are unique to the specific sources, demonstrating the wide spread of these hazardous compounds in the environment.

4.
Sci Total Environ ; 930: 172732, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663609

RESUMEN

East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 µg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.

5.
Sci Total Environ ; 905: 167113, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717748

RESUMEN

The South China Sea (SCS) is a receptor of pollution sources from various parts of Asia and is heavily impacted by strong meteorological systems, which thus dictate aerosol variability over the region. This study analyzes long-term aerosol optical properties observed at Dongsha Island (a representative site in northern SCS) from 2009 to 2021 and Taiping Island (a representative site in southern SCS) from 2012 to 2021 to better apprehend the temporal evolution of columnar aerosols over the SCS. The noticeable difference in loadings, optical properties, and compositions of aerosols between northern and southern SCS was due to the influence of dissimilar emission sources and transport mechanisms. Column-integrated aerosol optical depth (AOD) over northern SCS (range of monthly mean at 500 nm; 0.12-0.51) was significantly greater than southern SCS (0.09-0.21). The maximum AOD in March (0.51 ± 0.28) at Dongsha was attributed to westerlies coupled with biomass-burning (BB) emissions from peninsular Southeast Asia, whereas the maximum AOD at Taiping in September (0.21 ± 0.25) was owing to various pollution from the Philippines, Malaysia, and Indonesia. Fine-mode aerosol dominated over northern SCS (range of monthly mean Angstrom exponent for 440-870 nm: 0.85-1.36) due to substantial influence from continental sources including anthropogenic and BB emissions while coarse-mode particles dominated over southern SCS (0.54-1.28) due to relatively more influence from marine source. More absorbing columnar aerosols prevailed over northern SCS (range of monthly mean single scattering albedo at 675 nm: 0.92-0.99) compared to southern SCS (0.95-0.98) owing to differences in aerosol composition with respect to sources. Special pollution events showcased possible significant impacts on marine ecosystems and regional climate. This study encourages the establishment of more ground-based aerosol monitoring networks and the inclusion of modeling simulations to comprehend the complex nature of aerosol over this vast marginal sea.

6.
Environ Sci Pollut Res Int ; 30(42): 96474-96485, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567991

RESUMEN

Tea plantations are expanding globally and many are in mountainous areas with frequent fog but few studies have examined fog chemistry in these areas. We examined chemical composition of fog and rain water at a tea plantation in northern Taiwan. Fog water was collected using a Kroneis passive cylindrical fog-water collector and rain water was collected using a 20-cm-diameter funnel. The most abundant ions were Cl- and Na+ in both fog and rain waters due to the proximity of the site to the coast. The order of abundance of other ions was NO3- > Mg2+ > SO42- > Ca2+ > NH4+ > K+ > H+ in fog water and SO42- > K+ > NO3- > NH4+ > Ca2+ > Mg2+ > H+ in rain water. The concentration enrichment ratio (fog to rain) ranged between 2.2 (K+) and 22 (Mg2+) lying between sites near major emission sources and sites in remote areas, possibly because the immediate surrounding landscape is covered with secondary forests although it is near large cities. Factor analysis highlights the influences of sea-salt aerosols on the variation of fog and rain water chemistry. Sea-salt corrections using Na+ as the sea salt tracer led to negative concentrations of Cl- and Mg2+ suggesting that assumptions involved in sea-salt corrections were not satisfied. Agriculture influence is identified as a unique factor for explaining variance of K+, NH4+, and dissolved organic nitrogen (DON) concentrations in fog water but not rain water. Ion concentrations in fog and rain water were generally higher in the weekly samples associated with air trajectories passing through the continental East Asia than those associated with oceanic trajectories pointing to the role of regional pollution sources in affecting local fog and rain water chemistry. Our study highlights greater effects of tea agriculture on fog than rain water chemistry.


Asunto(s)
Contaminantes Atmosféricos , Agua , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Iones/análisis , Taiwán , , Agua/análisis
7.
Sci Total Environ ; 856(Pt 2): 159070, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179847

RESUMEN

This study applied positive matrix factorization (PMF) to identify the sources of size-resolved submicrometer (10-1000 nm) particles and quantify their contributions to impaired visibility based on the particle number size distributions (PNSDs), aerosol light extinction (bp), air pollutants (PM10, PM2.5, SO2, O3, and NO), and meteorological parameters (temperature, relative humidity, wind speed, wind direction, and ultraviolet index) measured hourly over an urban basin in central Taiwan between 2017 and 2021. The transport of source-specific PNSDs was evaluated with wind and back trajectory analyses. The PMF revealed six sources to the total particle number (TPN), surface (TPS), volume (TPV), and bp. Factor 1 (F1), the key contributor to TPN (35.0 %), represented nucleation (<25 nm) particles associated with fresh traffic emission and secondary new particle formation, which were transported from the west-southwest by stronger winds (>2.2 m s-1). F2 represented the large Aitken (50-100 nm) particles transported regionally via northerly winds, whereas F3 represented large accumulation (300-1000 nm) particles, which showed elevated concentrations under stagnant conditions (<1.1 m s-1). F4 represented small Aitken (25-50 nm) particles arising from the growth and transport of the nucleation particles (F1) via west-southwesterly winds. F5 represented large Aitken particles originating from combustion-related SO2 sources and carried by west-northwesterly winds. F6 represented small accumulation (100-300 nm) particles emitted both by local sources and by the remote SO2 sources found for F5. Overall, large accumulation particles (F3) played the greatest role in determining the TPV (66.4 %) and TPS (34.8 %), and their contribution to bp increased markedly from 17.3 % to 40.7 % as visibility decreased, indicating that TPV and TPS are better metrics than TPN for estimating bp. Furthermore, slow-moving air masses-and therefore stagnant conditions-facilitate the build-up of accumulation mode particles (F3 + F6), resulting in the poorest visibility.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Taiwán , Tamaño de la Partícula , Contaminantes Atmosféricos/análisis
8.
Sci Total Environ ; 856(Pt 1): 158797, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116651

RESUMEN

A near-real-time (NRT) aerosol forecast and diagnostic approach is developed based on the system of Infusing satellite Data into Environmental Applications for East Asia, herein denoted as IDEA-EA. The design incorporates a 0.5-degree Global Forecast System (GFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol and cloud retrievals for meteorological and remote sensing inputs. The primary output of IDEA-EA includes aerosol forward and backward air mass trajectory forecasts, migration visualization, and data synthesis purposed for NRT aerosol detection, monitoring, and source tracing in East Asia. Two aerosol episodes of Southeast Asia (SEA) biomass burning and Chinese haze infusion with Gobi dust are illustrated by IDEA-EA to demonstrate its forecast and source tracing capabilities. In the case of SEA biomass burning (late March 2021), forward trajectories of IDEA-EA forecasted air masses with high aerosol optical depth (AOD) from SEA affecting Taiwan. The IDEA-EA forecasts were verified by increased AOD and surface PM2.5 observations at a mountain site. In the case of the Chinese haze (October 30, 2019), backward trajectories from the northern tip of Taiwan traced air masses back to the east coast of mainland China and possibly further to the Gobi Desert. Compared with conventional numerical model simulations, the combination of the state-of-the-art aerosol remote sensing and trajectory modeling in IDEA-EA provides a cost-effective alternative for air quality management.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminación del Aire/análisis , Polvo/análisis
9.
Sci Total Environ ; 887: 163919, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37164070

RESUMEN

Much attention has been found to the long-range transport (LRT) of air pollutants and their adverse effects on downwind air qualities resulting from the Chinese haze, which frequently occurs in association with winter monsoon. This study integrates ground-based measurements, unmanned aerial vehicles (UAVs), and model simulations to characterize the meteorological, chemical, and particulate matter (PM) properties comprehensively for the events that were LRT or local pollution (LP) dominated in northern Taiwan during the wintertime of 2017. During the two types of episodes, various approaches were made to investigate the vertical mixing conditions and PM properties with UAV flights. A confined and PM accumulated feature near ground level with a temperature inversion was found during the LP event. In contrast, a vertically homogeneous atmospheric structure with strong winds was suggested during the LRT event. Independent measurements of criteria air pollutants, meteorological variables, volatile organic compounds (VOCs), and micropulse lidar (MPL) made at the ground level were closely supported by the vertical measurements. When synchronizing all these observational and numerical tools in a three-dimensional manner, the characterization of air masses and possible origins of pollution, such as LP vs. LRT, has now become more versatile and capable of gaining a complete picture of atmospheric conditions that define air quality.

10.
Sci Total Environ ; 809: 151180, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699812

RESUMEN

Atmospheric humic-like substances (HULIS) are important components of biomass-burning (BB) emissions and highly associated with light-absorbing organic aerosols (often referred to as brown carbon). This study highlights the importance of BB-emitted HULIS aerosols in peninsular Southeast Asian outflow to the subtropical western North Pacific. We determined various key light-absorbing characteristics of HULIS i.e. mass absorption cross-section (MACHULIS), absorbing component of the refractive index (kHULIS), and absorption Ångström exponent (AAEHULIS) based on ground-based aerosol light absorption measurements along with HULIS concentrations in springtime aerosols at Lulin Atmospheric Background Station (LABS; 2862 m above mean sea level), which is a representative high-altitude remote site in the western North Pacific. Daily variations of HULIS (0.58-12.92 µg m-3) at LABS were mostly linked with the influence from incoming air-masses, while correlations with BB tracers and secondary aerosols indicated the attribution of primary and secondary sources. Stronger light absorption capability of HULIS was clearly evident from MACHULIS and kHULIS values at 370 nm, which were about ~1.5 times higher during BB-dominated days (1.16 ± 0.75 m2 g-1 and 0.05 ± 0.03, respectively) than that during non-BB days (0.77 ± 0.89 m2 g-1 and 0.03 ± 0.04, respectively). Estimates from a simple radiative transfer model showed that HULIS absorption can add as much as 15.13 W g-1 to atmospheric warming, and ~46% more during BB-dominated than non-BB period, highlighting that HULIS light absorption may significantly affect the Earth-atmosphere system and tropospheric photochemistry over the western North Pacific.


Asunto(s)
Contaminantes Atmosféricos , Sustancias Húmicas , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Altitud , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Material Particulado/análisis
11.
Sci Total Environ ; 834: 155291, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35439502

RESUMEN

Continental outflows from peninsular Southeast Asia and East Asia dominate the widespread dispersal of air pollutants over subtropical western North Pacific during spring and autumn, respectively. This study analyses the chemical composition and optical properties of PM10 aerosols during autumn and spring at a representative high-altitude site, viz., Lulin Atmospheric Background Station (23.47°N, 120.87°E; 2862 m a.s.l.), Taiwan. PM10 mass was reconstructed and the contributions of major chemical components were also delineated. Aerosol scattering (σsp) and absorption (σap) coefficients were regressed on mass densities of major chemical components by assuming external mixing between them, and the site-specific mass scattering efficiency (MSE) and mass absorption efficiency (MAE) of individual components for dry conditions were determined. NH4NO3 exhibited the highest MSE among all components during both seasons (8.40 and 12.58 m2 g-1 at 550 nm in autumn and spring, respectively). (NH4)2SO4 and organic matter (OM) accounted for the highest σsp during autumn (51%) and spring (50%), respectively. Mean MAE (mean contribution to σap) of elemental carbon (EC) at 550 nm was 2.51 m2 g-1 (36%) and 7.30 m2 g-1 (61%) in autumn and spring, respectively. Likewise, the mean MAE (mean contribution to σap) of organic carbon (OC) at 550 nm was 0.84 m2 g-1 (64%) and 0.83 m2 g-1 (39%) in autumn and spring, respectively. However, a classification matrix, based on scattering Ångström exponent, absorption Ångström exponent, and single scattering albedo (ω), demonstrated that the composite absorbing aerosols were EC-dominated (with weak absorption; ω = 0.91-0.95) in autumn and a combination of EC-dominated and EC/OC mixture (with moderate absorption; ω = 0.85-0.92) in spring. This study demonstrates a strong link between chemical composition and optical properties of aerosol and provides essential information for model simulations to assess the imbalance in regional radiation budget with better accuracy over the western North Pacific.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Material Particulado/análisis , Estaciones del Año
12.
Environ Pollut ; 312: 119951, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36002097

RESUMEN

This study investigated the hourly inorganic aerosol chemistry and its impact on atmospheric visibility over an urban area in Central Taiwan, by relying on measurements of aerosol light extinction, inorganic gases, and PM2.5 water-soluble ions (WSIs), and simulations from a thermodynamic equilibrium model. On average, the sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) components (SNA) contributed ∼90% of WSI concentrations, which in turn made up about 50% of the PM2.5 mass. During the entire observation period, PM2.5 and SNA concentrations, aerosol pH, aerosol liquid water content (ALWC), and sulfur and nitrogen conversion ratios all increased with decreasing visibility. In particular, the NO3- contribution to PM2.5 increased, whereas the SO42- contribution decreased, with decreasing visibility. The diurnal variations of the above parameters indicate that the interaction and likely mutual promotion between NO3- and ALWC enhanced the hygroscopicity and aqueous-phase reactions conducive for NO3- formation, thus led to severely impaired visibility. The high relative humidity (RH) at the study area (average 70.7%) was a necessary but not sole factor leading to enhanced NO3- formation, which was more directly associated with elevated ALWC and aerosol pH. Simulations from the thermodynamic model depict that the inorganic aerosol system in the study area was characterized by fully neutralized SO42- (i.e. a saturated factor in visibility reduction) and excess NH4+ amidst a NH3-rich environment. As a result, PM2.5 composition was most sensitive to gas-phase HNO3, and hence NOx, and relatively insensitive to NH3. Consequently, a reduction of NOx would result in instantaneous cuts of NO3-, PM2.5, and ALWC, and hence improved visibility. On the other hand, a substantial amount of NH3 reduction (>70%) would be required to lower the aerosol pH, driving more than 50% of the particulate phase NO3- to the gas phase, thereby making NH3 a limiting factor in shifting PM2.5 composition.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , China , Monitoreo del Ambiente , Gases , Nitratos/análisis , Nitrógeno , Material Particulado/análisis , Sulfatos/análisis , Azufre , Taiwán , Agua/química
13.
Sci Total Environ ; 827: 154255, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35247399

RESUMEN

East Asian dust episodes have a multitude of impacts, including on human health, environment, and climate over near-source and receptor regions. However, the mechanistic understanding of the synoptic conditions of these outbreaks at different altitude layers, and their eventual environmental impacts are less studied. The present study analyzed the synoptic transport patterns of East Asian dust during multiple dust generation episodes that occurred over only a few days apart in northern China, and which eventually delivered high PM10 concentrations to surface level and high-altitude locations in Taiwan. Whether the dust plume was uplifted ahead of or behind the 700 hPa trough over East Asia determined its trajectory and eventual impact on the environment downwind. The total dust (iron) deposition over the ocean surface preceding arrival to Taiwan was 2.4 mg m-2 (0.95 µg m-2) for the episode impacting the surface level and 5.0 mg m-2 (4.6 µg m-2) for the episode impacting high-altitude Taiwan. Dust deposition in marine areas east of China was more intense for the higher altitude transport event that was uplifted behind the 700 hPa trough and resulted in twice higher marine Chl-a concentrations. Furthermore, we estimated a dust-induced direct radiative effect over a high mountainous region in Taiwan of -6.2 to -8.2 W m-2 at the surface, -1.9 to -2.9 W m-2 at the top of the atmosphere and +3.9 to +5.3 W m-2 in the atmosphere. This dust-induced atmospheric warming and surface cooling are non-negligible influences on the atmospheric thermal structure and biogeochemical cycle over the western North Pacific. Overall, this study highlights the significant impacts of dust particles on the marine ecosystem and atmospheric radiation budget over the downwind region, thus lays the foundation for linking these impacts to the initial synoptic conditions in the source area.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Atmósfera , Polvo/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Humanos
14.
Environ Pollut ; 276: 116735, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33611195

RESUMEN

Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBrC), absorption Ångström exponent (AAEBrC), and the absorbing component of the refractive index (kBrC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBrC and kBrC values at 370 nm were 2.4 m2 g-1 and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370-950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Asia Sudoriental , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Tailandia
16.
Sci Total Environ ; 740: 140112, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32544735

RESUMEN

Meteorological parameters are the critical factors affecting the transmission of infectious diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and influenza. Consequently, infectious disease incidence rates are likely to be influenced by the weather change. This study investigates the role of Singapore's hot tropical weather in COVID-19 transmission by exploring the association between meteorological parameters and the COVID-19 pandemic cases in Singapore. This study uses the secondary data of COVID-19 daily cases from the webpage of Ministry of Health (MOH), Singapore. Spearman and Kendall rank correlation tests were used to investigate the correlation between COVID-19 and meteorological parameters. Temperature, dew point, relative humidity, absolute humidity, and water vapor showed positive significant correlation with COVID-19 pandemic. These results will help the epidemiologists to understand the behavior of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus against meteorological variables. This study finding would be also a useful supplement to help the local healthcare policymakers, Center for Disease Control (CDC), and the World Health Organization (WHO) in the process of strategy making to combat COVID-19 in Singapore.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Tiempo (Meteorología) , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Neumonía Viral/epidemiología , SARS-CoV-2 , Singapur
17.
Environ Pollut ; 259: 113871, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31918141

RESUMEN

Black carbon (BC) has been demonstrated to pose significant negative impacts on climate and human health. Equivalent BC (EBC) measurements were conducted using a 7-wavelength aethalometer, from March to May 2016, over an urban atmosphere, viz., Chiang Mai (98.957°E, 18.795°N, 373 m above sea level), Thailand in northern peninsular Southeast Asia. Daily variations in aerosol light absorption were mainly governed by open fire activities in the region. The mean mass-specific absorption cross-section (MAC) value of EBC at 880 nm was estimated to be 9.3 m2 g-1. The median EBC mass concentration was the highest in March (3.3 µg m-3) due to biomass-burning (comprised of forest fire and agricultural burning) emissions accompanied by urban air pollution within the planetary boundary layer under favorable meteorological conditions. Daily mean absorption Ångström exponent (AAE470/950) varied between 1.3 and 1.7 and could be due to variations in EBC emission sources and atmospheric mixing processes. EBC source apportionment results revealed that biomass-burning contributed significantly more to total EBC concentrations (34-92%) as compared to fossil-fuel (traffic emissions). Health risk estimates of EBC in relation to different health outcomes were assessed in terms of passive cigarette equivalence, highlighting the considerable health effects associated with exposure to EBC levels. As a necessary action, the reduction of EBC emissions would promote considerable climate and health co-benefits.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Carbono , Monitoreo del Ambiente , Aerosoles , Contaminantes Atmosféricos/análisis , Asia Sudoriental , Atmósfera/química , Biomasa , Carbono/análisis , Humanos , Medición de Riesgo
18.
Sci Total Environ ; 741: 140214, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32599400

RESUMEN

Long-range transport (LRT) of air pollutants from East Asia during the northeast monsoon season impacts several downwind locations. In 2020, the initial COVID-19 lockdowns in China overlapped with Week 3 of the Chinese New Year (CNY) holiday, and an Asian outflow event. Thus, movement of the Chinese populace from city to city was already greatly reduced by the time of the LRT episode, although the reductions in industrial output are less clear. We found NO2 column concentrations were reduced by 24% during the CNY Week 3 this year compared to previous years. The attenuated transport event arrived to northern Taiwan with a PM2.5 concentration <45 µg m-3 and most often <35 µg m-3, which is 2-3 times lower than LRT episodes of similar back-trajectory and synoptic patterns. The whole episode persisted for about 60 h, longer than most LRT episodes from China to Taiwan. CMAQ v5.2.1 modeling of the LRT event with 100% emission and reduced emission scenarios, revealed emissions in China were approximately 50% less than normal periods. Due to the length of the episode and the significant reduction in emissions, Taiwan avoided a PM2.5 surplus of 19.2 µg m-3 on average during the episode, equivalent to a 0.5 µg m-3 reduction for the whole 3-month winter season. Employing the 100% emission model scenario and scaling up to the average episode hours each winter, the PM2.5 surplus delivered via plumes on the northeast monsoon is equivalent to a 0.5 µg m-3 surplus for the whole year.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , China , Ciudades , Monitoreo del Ambiente , Asia Oriental , Humanos , Material Particulado/análisis , SARS-CoV-2 , Taiwán
19.
Environ Pollut ; 265(Pt B): 114813, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32504975

RESUMEN

This study examined the long-term trends in chemical components in PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003-2018. High ambient concentrations of PM2.5 and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (-0.67% yr-1; p = 0.01), elemental carbon (-0.48% yr-1; p = 0.18), and non-sea-salt (nss) K+ (-0.71% yr-1; p = 0.04) during 2003-2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (-0.26% yr-1; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO3- displayed an increasing trend (0.71% yr-1; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (-1.04% yr-1; p = 0.0001) during 2006-2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K+) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM2.5 chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Altitud , Asia , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Taiwán
20.
J Environ Qual ; 38(2): 627-36, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19244483

RESUMEN

We analyzed fog and bulk precipitation chemistry at a cloud forest in central Taiwan where mountain agriculture activities are highest. There were 320 foggy days (visibility <1000 m) recorded between April 2005 and March 2006. Fog was most frequent between April 2005 and July 2005 and in March 2006 (153/153 d) and least frequent in January 2006 (21/31 d). The total fog duration was 2415 h, representing 28% of the sampling period. Compared with bulk precipitation, fog was disproportionally enriched in NO(3)(-) and SO(4)(2-) relative to K(+), Ca(2+), Mg(2+), and NH(4)(+), resulting in higher a content of nitric acid and sulfuric acid than weak acids or neutral salts and, therefore, higher acidity (median pH, 4.9) in fog than in bulk precipitation (median and mean pH, 5.5). The very high input of NH(4)(+) (47 kg N ha(-1) yr(-1)) through bulk precipitation suggests that the use of fertilizer (ammonium sulfate and animal manure) associated with mountain agriculture has a major impact on atmospheric deposition at the surrounding forest ecosystems. The input of inorganic N reached 125 kg N ha(-1) yr(-1) and likely exceeded the biological demand of the forest ecosystem. Sulfate is the most abundant anion in fog at Chi-tou and in precipitation at various forests throughout Taiwan, suggesting that the emission and transport of large quantities of SO(2,) the precursor of SO(4)(2-), is an island-wide environmental issue.


Asunto(s)
Ecosistema , Lluvia/química , Estaciones del Año , Tiempo (Meteorología) , Nitrógeno/análisis , Sulfatos/análisis , Taiwán , Árboles , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA