Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 721: 150109, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38762932

RESUMEN

Wild-type Proteinase K binds to two Ca2+ ions, which play an important role in regulating enzymaticactivity and maintaining protein stability. Therefore, a predetermined concentration of Ca2+ must be added during the use of Proteinase K, which increases its commercial cost. Herein, we addressed this challenge using a computational strategy to engineer a Proteinase K mutant that does not require Ca2+ and exhibits high enzymatic activity and protein stability. In the absence of Ca2+, the best mutant, MT24 (S17W-S176N-D260F), displayed an activity approximately 9.2-fold higher than that of wild-type Proteinase K. It also exhibited excellent protein stability, retaining 56.2 % of its enzymatic activity after storage at 4 °C for 5 days. The residual enzymatic activity was 65-fold higher than that of the wild-type Proteinase K under the same storage conditions. Structural analysis and molecular dynamics simulations suggest that the introduction of new hydrogen bond and π-π stacking at the Ca2+ binding sites due to the mutation may be the reasons for the increased enzymatic activity and stability of MT24.


Asunto(s)
Calcio , Endopeptidasa K , Estabilidad de Enzimas , Simulación de Dinámica Molecular , Estabilidad Proteica , Endopeptidasa K/metabolismo , Endopeptidasa K/química , Calcio/metabolismo , Calcio/química , Diseño Asistido por Computadora , Mutación , Sitios de Unión , Ingeniería de Proteínas/métodos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA