Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 603(7899): 159-165, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197629

RESUMEN

Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.


Asunto(s)
Hipoglucemiantes , Metformina , ATPasas de Translocación de Protón Vacuolares , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfatasas/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Caenorhabditis elegans/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Glucosa/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Lisosomas/metabolismo , Proteínas de la Membrana , Metformina/agonistas , Metformina/metabolismo , Metformina/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo
2.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153534

RESUMEN

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Glucosa/metabolismo , Glucólisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Vía de Pentosa Fosfato , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Biomarcadores de Tumor/metabolismo , Muerte Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Fructosa-Bifosfatasa/metabolismo , Genotipo , Células HCT116 , Hexoquinasa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Masculino , Ratones Noqueados , Fenotipo , Fosfofructoquinasa-1/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/metabolismo
3.
Nature ; 548(7665): 112-116, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28723898

RESUMEN

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Glucosa/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteína Axina/metabolismo , Sitios de Unión , Activación Enzimática , Fibroblastos , Fructosa-Bifosfato Aldolasa/genética , Glucosa/deficiencia , Humanos , Masculino , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Hepatology ; 67(6): 2397-2413, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29272037

RESUMEN

unc-51-like autophagy activating kinase 1 and 2 (Ulk1/2) regulate autophagy initiation under various stress conditions. However, the physiological functions of these Ser/Thr kinases are not well characterized. Here, we show that mice with liver-specific double knockout (LDKO) of Ulk1 and Ulk2 (Ulk1/2 LDKO) are viable, but exhibit overt hepatomegaly phenotype. Surprisingly, Ulk1/2 LDKO mice display normal autophagic activity in hepatocytes upon overnight fasting, but are strongly resistant to acetaminophen (APAP)-induced liver injury. Further studies revealed that Ulk1/2 are also dispensable for APAP-induced autophagy process, but are essential for the maximum activation of c-Jun N-terminal kinase (JNK) signaling both in vivo and in isolated primary hepatocytes during APAP treatment. Mechanistically, APAP-induced inhibition of mechanistic target of rapamycin complex 1 releases Ulk1 from an inactive state. Activated Ulk1 then directly phosphorylates and increases the kinase activity of mitogen-activated protein kinase kinase 4 and 7 (MKK4/7), the upstream kinases and activator of JNK, and mediates APAP-induced liver injury. Ulk1-dependent phosphorylation of MKK7 was further confirmed by a context-dependent phosphorylation antibody. Moreover, activation of JNK and APAP-induced cell death was markedly attenuated in Mkk4/7 double knockdown hepatocytes reconstituted with an Ulk1-unphosphorylatable mutant of MKK7 compared to those in cells rescued with wild-type MKK7. CONCLUSION: Together, these findings reveal an important role of Ulk1/2 for APAP-induced JNK activation and liver injury, and understanding of this regulatory mechanism may offer us new strategies for prevention and treatment of human APAP hepatotoxicity. (Hepatology 2018;67:2397-2413).


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Antipiréticos/efectos adversos , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Masculino , Ratones
5.
Carcinogenesis ; 35(3): 537-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24193512

RESUMEN

Twist2 is a highly conserved basic helix-loop-helix transcription factor that plays a critical role in embryogenesis. Recent evidence has revealed that aberrant Twist2 expression contributes to tumor progression; however, the role of Twist2 in human hepatocellular carcinoma (HCC) and its underlying mechanisms remain undefined. In this report, we demonstrate that Twist2 is overexpressed in human HCC tumors. We show that ectopic expression of Twist2 induces epithelial-mesenchymal transition phenotypes, augments cell migration and invasion and colony-forming abilities in human HCC cells in vitro, and promotes tumor growth in vivo. Moreover, we found a higher percentage of CD24(+) liver cancer stem-like cells in Twist2-transduced HCC cells. Twist2-expressing cells exhibited an increased expression of stem cell markers Bmi-1, Sox2, CD24 and Nanog and an increased capacity for self-renewal. Knockdown of CD24 in HepG2/Twist2 cells decreased the levels of Sox2, pSTAT3 and Nanog, and reversed the cancer stem-like cell phenotypes induced by ectopic expression of Twist2. Furthermore, Twist2 regulated the CD24 expression by directly binding to the E-box region in CD24 promoter. Therefore, our data demonstrated that Twist2 augments liver cancer stem-like cell self-renewal in a CD24-dependent manner. Twist2-CD24-STAT3-Nanog pathway may play a critical role in regulating liver cancer stem-like cell self-renewal. The identification of the Twist2-CD24 signaling pathway provides a potential therapeutic approach to target cancer stem cells in HCCs.


Asunto(s)
Antígeno CD24/fisiología , División Celular/fisiología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Proteínas Represoras/fisiología , Proteína 1 Relacionada con Twist/fisiología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Transición Epitelial-Mesenquimal , Citometría de Flujo , Humanos , Reacción en Cadena de la Polimerasa
6.
Physiology (Bethesda) ; 28(6): 423-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24186937

RESUMEN

Growth factors, typically defined as natural substances capable of stimulating cell growth and differentiation, are vital regulators for the survival of metazoan cells. In this review, we will focus on growth factor signaling pathways that are closely related to autophagy induction and discuss the critical roles of this fascinating cellular process in intracellular energy homeostasis, cell fate determination, and pathophysiological regulation.


Asunto(s)
Autofagia , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Animales , Apoptosis , Homeostasis , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Hepatology ; 67(6): 2477, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29389009
8.
Cell Rep ; 43(5): 114238, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748875

RESUMEN

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Asunto(s)
Dieta Alta en Grasa , Proteína 1 Similar a ELAV , Absorción Intestinal , Triglicéridos , Triglicéridos/metabolismo , Triglicéridos/biosíntesis , Animales , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Ratones , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones Endogámicos C57BL , Masculino , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Obesidad/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Ratones Noqueados , Regiones no Traducidas 3'/genética , Aciltransferasas
9.
Front Neurosci ; 18: 1368552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716255

RESUMEN

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

10.
Cell Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898113

RESUMEN

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

11.
J Mol Cell Biol ; 15(5)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37188647

RESUMEN

Brain-specific serine/threonine-protein kinase 2 (BRSK2) plays critical roles in insulin secretion and ß-cell biology. However, whether BRSK2 is associated with human type 2 diabetes mellitus (T2DM) has not been determined. Here, we report that BRSK2 genetic variants are closely related to worsening glucose metabolism due to hyperinsulinemia and insulin resistance in the Chinese population. BRSK2 protein levels are significantly elevated in ß cells from T2DM patients and high-fat diet (HFD)-fed mice due to enhanced protein stability. Mice with inducible ß-cell-specific Brsk2 knockout (ßKO) exhibit normal metabolism with a high potential for insulin secretion under chow-diet conditions. Moreover, ßKO mice are protected from HFD-induced hyperinsulinemia, obesity, insulin resistance, and glucose intolerance. Conversely, gain-of-function BRSK2 in mature ß cells reversibly triggers hyperglycemia due to ß-cell hypersecretion-coupled insulin resistance. Mechanistically, BRSK2 senses lipid signals and induces basal insulin secretion in a kinase-dependent manner. The enhanced basal insulin secretion drives insulin resistance and ß-cell exhaustion and thus the onset of T2DM in mice fed an HFD or with gain-of-function BRSK2 in ß cells. These findings reveal that BRSK2 links hyperinsulinemia to systematic insulin resistance via interplay between ß cells and insulin-sensitive tissues in the populations carrying human genetic variants or under nutrient-overload conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistencia a la Insulina , Células Secretoras de Insulina , Humanos , Ratones , Animales , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Dieta Alta en Grasa
12.
Cell Res ; 33(11): 835-850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37726403

RESUMEN

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Serina/metabolismo , Línea Celular Tumoral
13.
Dev Cell ; 13(2): 268-82, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17681137

RESUMEN

Axin is a scaffold protein that controls multiple important pathways, including the canonical Wnt pathway and JNK signaling. Here we have identified an Axin-interacting protein, Aida, which blocks Axin-mediated JNK activation by disrupting Axin homodimerization. During investigation of in vivo functions of Axin/JNK signaling and aida in development, it was found that Axin, besides ventralizing activity by facilitating beta-catenin degradation, possesses a dorsalizing activity that is mediated by Axin-induced JNK activation. This dorsalizing activity is repressed when aida is overexpressed in zebrafish embryos. Whereas Aida-MO injection leads to dorsalized embryos, JNK-MO and MKK4-MO can ventralize embryos. The anti-dorsalization activity of aida is conferred by its ability to block Axin-mediated JNK activity. We further demonstrate that dorsoventral patterning regulated by Axin/JNK signaling is independent of maternal or zygotic Wnt signaling. We have thus identified a dorsalization pathway that is exerted by Axin/JNK signaling and its inhibitor Aida during vertebrate embryogenesis.


Asunto(s)
Tipificación del Cuerpo , Proteínas Portadoras/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , beta Catenina/metabolismo , Animales , Proteína Axina , Tipificación del Cuerpo/efectos de los fármacos , Células COS , Línea Celular , Chlorocebus aethiops , Dimerización , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/enzimología , Activación Enzimática/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Oligonucleótidos Antisentido/farmacología , Fenotipo , Unión Proteica/efectos de los fármacos , Proteínas Represoras/química , Proteínas Wnt/metabolismo , Pez Cebra/metabolismo
14.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217034

RESUMEN

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Asunto(s)
Insulinas , Inanición , Humanos , Masculino , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Lisosomas/metabolismo , Inanición/metabolismo , Adenosina Trifosfatasas/metabolismo , Caenorhabditis elegans , Adenosina Monofosfato/metabolismo , Fructosa/metabolismo , Insulinas/metabolismo
15.
Dev Cell ; 11(2): 225-38, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16890162

RESUMEN

Maternal beta-catenin and Nodal signals are essential for the formation of the dorsal organizer, which, in turn, induces neural and other dorsal tissue development in vertebrate embryos. Tob (Transducer of ErbB2) proteins possess antiproliferative properties and are known to influence BMP signaling, but their relationship to other signaling pathways and to embryonic patterning in general was unclear. In this study, we demonstrate that zebrafish tob1a is required for correct dorsoventral patterning. Mechanistically, Tob1a inhibits beta-catenin transcriptional activity by physically associating with beta-catenin and preventing the formation of beta-catenin/LEF1 complexes. Although Tob1a can also inhibit the transcriptional activity of the Nodal effector Smad3, its role in limiting dorsal development is executed primarily by antagonizing the beta-catenin signal. We further demonstrate that Tob family members across species share similar biochemical properties and biological activities.


Asunto(s)
Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , beta Catenina/antagonistas & inhibidores , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína smad3/antagonistas & inhibidores , Proteína smad3/metabolismo , Raíces Nerviosas Espinales/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/farmacología , beta Catenina/genética , beta Catenina/fisiología
16.
Mol Cell Oncol ; 8(1): 1866975, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33553613

RESUMEN

Remodeling of lipid metabolism has been implicated in cancers; however, it remains obscure how the lipid metabolic pathways are altered by oncogenic signaling to affect tumor development. We have recently shown that proto-oncogene tyrosine-protein kinase Src interacts with and phosphorylates the lipogenesis enzyme phosphatidate phosphatase LPIN1 to promote breast cancer development.

17.
Nat Cell Biol ; 23(3): 268-277, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33664495

RESUMEN

The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/inervación , Proteínas de Transferencia de Fosfolípidos/metabolismo , Sistema Nervioso Simpático/fisiología , Termogénesis , Proteína Desacopladora 1/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metabolismo Energético , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Fosforilación , Transducción de Señal , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética
18.
Nat Commun ; 11(1): 5842, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203880

RESUMEN

Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1-/- mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.


Asunto(s)
Neoplasias de la Mama/patología , Proteína Tirosina Quinasa CSK/genética , Fosfatidato Fosfatasa/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Proteína Tirosina Quinasa CSK/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Lipogénesis/fisiología , Masculino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones Mutantes , Ratones Transgénicos , Fosfatidato Fosfatasa/genética , Fosforilación , Proto-Oncogenes Mas , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cell Res ; 29(6): 460-473, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948787

RESUMEN

AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Nutrientes/metabolismo , Proteínas Quinasas Activadas por AMP/biosíntesis , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Fosforilación
20.
Cell Metab ; 30(3): 508-524.e12, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204282

RESUMEN

Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD+ levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Glucosa/metabolismo , Canales Catiónicos TRPV/metabolismo , Acrilamidas/farmacología , Adenosina Trifosfatasas/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA