Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211970

RESUMEN

AIMS: To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS: Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS: Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.


Asunto(s)
Cladosporium , Aceites Volátiles , Rosa , Aceites Volátiles/farmacología , Antifúngicos/farmacología , Planta de la Mostaza , Aceites de Plantas/farmacología
2.
Biotechnol J ; 18(9): e2300122, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37288751

RESUMEN

BACKGROUND: α-Glucosidase (AG) is a bifunctional enzyme, it has a capacity to synthesize 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) from l-ascorbic acid (L-AA) and low-cost maltose under mild conditions, but it can also hydrolyze AA-2G, which leads to low synthesis efficiency of AA-2G. MAIN METHODS AND MAJOR RESULTS: This study introduces a rational molecular design strategy to regulate enzymatic reactions based on inhibiting the formation of ground state of enzyme-substrate complex. Y215 was analyzed as the key amino acid site affecting the affinity of AG to AA-2G and L-AA. For the purpose of reducing the hydrolysis efficiency of AA-2G, the mutant Y215W was obtained by analyzing the molecular docking binding energy and hydrogen bond formation between AG and the substrates. Compared with the wild-type, isothermal titration calorimetry (ITC) results showed that the equilibrium dissociation constant (KD ) of the mutant for AA-2G was doubled; the Michaelis constant (Km ) for AA-2G was reduced by 1.15 times; and the yield of synthetic AA-2G was increased by 39%. CONCLUSIONS AND IMPLICATIONS: Our work also provides a new reference strategy for the molecular modification of multifunctional enzymes and other enzymes in cascade reactions system.


Asunto(s)
Ácido Ascórbico , alfa-Glucosidasas , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Hidrólisis
3.
Int J Biol Macromol ; 253(Pt 7): 127500, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858644

RESUMEN

To improve the hydration properties of high-temperature pressed peanut protein isolate (HPPI), we investigated the effect of cold plasma (CP) oxidation on functional and structural properties. Compared to HPPI, the hydrated molecules number and the surface contact angle were significantly decreased at 70 W, from 77.2 × 109 to 17.7 × 109 and from 85.74° to 57.81°, respectively. The reduction of the sulfhydryl content and the increase of the disulfide bond and di-tyrosine content indicated that the structural transformation was affected by the oxidation effect. In terms of structural changes, a stretched tertiary structure, ordered secondary structure, and rough apparent structure were observed after CP treatment. Additionally, the enhancement of surface free energy and group content such as -COOH, -CO and -OH on the surface of HPPI contributed to the formation of hydrated crystal structures. In general, the oxidation effect of CP effectively improved the hydration properties of HPPI and broaden its application field.


Asunto(s)
Arachis , Gases em Plasma , Arachis/química , Temperatura , Proteínas , Oxidación-Reducción
4.
Food Res Int ; 160: 111688, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076449

RESUMEN

Ba-bao Douchi, traditionally produced and spontaneously fermented for 1-2 years, has a unique flavor. However, little information is known about microorganisms and volatile flavors, particularly their relationship. In this study, the aroma profiles including the key aroma compounds, and bacterial communities were characterized and the correlations between dominant bacterial genera with key aroma compounds were studied during the post-fermentation of Ba-bao Douchi. The research showed that 12 bacterial genera were identified as the dominant genus by high-throughput sequencing. A total of 84 volatile compounds were detected by HS-GC-IMS and HS-SPME-GC-MS. Odor activity value (OAV) and gas chromatography-Mass spectrometry-olfactometry (GC-MS-O) were combined to determine the key volatile compounds, and the main volatile compounds including ethyl hexanoate, ethyl heptanoate, isovaleraldehyde, (+)-α-pinene, beta-phellandrene, were found to be responsible for the strong fruitiness, chocolate fragrance, fresh scent flavor, and ginger flavor of Ba-bao Douchi. Pearson correlation analysis showed that 5 dominant bacterial genera were positively associated with > 6 key volatile compounds (p < 0.01, |r| > 0.7). Thus, these bacterial genera might have an effect on the biosynthesis of volatile components. This study provides a theoretical reference for revealing the functional microorganisms and improving the flavor quality of Ba-bao Douchi.


Asunto(s)
Aromatizantes , Compuestos Orgánicos Volátiles , Bacterias , Fermentación , Olfatometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA