Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(2): 1503-1515, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38392215

RESUMEN

The diversity of leaf characteristics, particularly leaf color, underscores a pivotal area of inquiry within plant science. The synthesis and functionality of chlorophyll, crucial for photosynthesis, largely dictate leaf coloration, with varying concentrations imparting different shades of green. Complex gene interactions regulate the synthesis and degradation of chlorophyll, and disruptions in these pathways can result in abnormal chlorophyll production, thereby affecting leaf pigmentation. This study focuses on Bambusa multiplex f. silverstripe, a natural variant distinguished by a spectrum of leaf colors, such as green, white, and green-white, attributed to genetic variations influencing gene expression. By examining the physiological and molecular mechanisms underlying chlorophyll anomalies and genetic factors in Silverstripe, this research sheds light on the intricate gene interactions and regulatory networks that contribute to leaf color diversity. The investigation includes the measurement of photosynthetic pigments and nutrient concentrations across different leaf color types, alongside transcriptomic analyses for identifying differentially expressed genes. The role of key genes in pathways such as ALA biosynthesis, chlorophyll synthesis, photosynthesis, and sugar metabolism is explored, offering critical insights for advancing research and plant breeding practices.

2.
J Biomed Sci ; 31(1): 62, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862973

RESUMEN

BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.


Asunto(s)
Adipocitos , Resistencia a Antineoplásicos , Epiplón , Neoplasias Ováricas , Piroptosis , Microambiente Tumoral , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Epiplón/metabolismo , Humanos , Adipocitos/metabolismo , Ratones , Animales , Línea Celular Tumoral , Técnicas de Cocultivo
3.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4207-4219, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307759

RESUMEN

This article analyzed the mechanism of Huangqi Simiao Decoction(HSD) for the treatment of type 2 diabetes mellitus(T2DM). The component targets of HSD and the related disease targets of T2DM were screened through network pharmacology. The protein-protein interaction(PPI) network of intersecting targets and the drug-component-intersecting target network were constructed to screen the potential active ingredients and targets. Molecular docking was performed using AutoDock Vina software to verify the interaction between potential components and core targets. The serum was tested by ultra performance liquid chromatography-tandem mass spectrometry, and multivariate statistical analyses, such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA), were used to search for the differential metabolites and related metabolic pathways of each group by combining with the MetaboAnalyst database. The same metabolic pathways were analyzed by combining the screened differential metabolites with the intersecting targets screened by network pharmacology. Network pharmacology showed that the nine core components of HSD for the treatment of T2DM were quercetin, kaempferol, stigmasterol, baicalein, ß-sitosterol, flavodoxin, canthaxanthin, canthaxanthin, berberine, and berberine, and the five core targets included AKT1, TP53, TNF, IL6, and VEGFA. Molecular docking showed that the core components bound well to the target genes. Metabolomics showed that a total of 112 common differential metabolites were identified, of which 88 metabolites exhibited increased concentration and 24 metabolites decreased concentration after treatment with HSD. Enrichment analysis showed that HSD regulated the body metabolism of patients with T2DM, mainly related to seven metabolic pathways, such as amino acid metabolism and tricarboxylic acid cycle. The joint analysis of metabolomics and network pharmacology showed that both involved histidine metabolism, arginine and proline metabolic pathways. This study suggests that HSD has a good efficacy for T2DM. Based on the combined analysis of metabolomics and network pharmacology, it was found that the mechanism may be that the pharmacodynamic bases of quercetin, kaempferol, and stigmasterol in HSD enhance the effects on histidine metabolism, arginine and proline metabolic pathways by modulating a variety of metabolites, which provides the basis for further prevention and treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Metabolómica , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Simulación del Acoplamiento Molecular
4.
Biogerontology ; 24(3): 391-401, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36802043

RESUMEN

Non-alcoholic fatty liver disease is associated with ageing, and impaired mitochondrial homeostasis is the main cause for hepatic ageing. Caloric restriction (CR) is a promising therapeutic approach for fatty liver. The purpose of the present study was to investigate the possibility of early-onset CR in decelerating the progression of ageing-related steatohepatitis. The putative mechanism associated with mitochondria was further determined. C57BL/6 male mice at 8 weeks of age were randomly assigned to one of three treatments: Young-AL (AL, ad libitum), Aged-AL, or Aged-CR (60% intake of AL). Mice were sacrificed when they were 7 months old (Young) or 20 months old (Aged). Aged-AL mice displayed the greatest body weight, liver weight, and liver relative weight among treatments. Steatosis, lipid peroxidation, inflammation, and fibrosis coexisted in the aged liver. Mega mitochondria with short, randomly organized crista were noticed in the aged liver. The CR ameliorated these unfavourable outcomes. The level of hepatic ATP decreased with ageing, but this was reversed by CR. Ageing caused a decrease in mitochondrial-related protein expressions of respiratory chain complexes (NDUFB8 and SDHB) and fission (DRP1), but an increase in proteins related to mitochondrial biogenesis (TFAM), and fusion (MFN2). CR reversed the expression of these proteins in the aged liver. Both Aged-CR and Young-AL revealed a comparable pattern of protein expression. To summarize, this study demonstrated the potential of early-onset CR in preventing ageing-associated steatohepatitis, and maintaining mitochondrial functions may contribute to CR's protection during hepatic ageing.


Asunto(s)
Restricción Calórica , Hígado Graso , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Mitocondrias , Hígado Graso/prevención & control , Envejecimiento/metabolismo , Homeostasis
5.
BMC Infect Dis ; 23(1): 206, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024812

RESUMEN

BACKGROUND: This study investigated associations between climate variables (average temperature and cumulative rainfall), and El Niño Southern Oscillation (ENSO) and dengue-like-illness (DLI) incidence in two provinces (Western and Guadalcanal Provinces) in Solomon Islands (SI). METHODS: Weekly DLI and meteorological data were obtained from the Ministry of Health and Medical Services SI and the Ministry of Environment, Climate Change, Disaster Management and Meteorology from 2015 to 2018, respectively. We used negative binomial generalized estimating equations to assess the effects of climate variables up to a lag of 2 months and ENSO on DLI incidence in SI. RESULTS: We captured an upsurge in DLI trend between August 2016 and April 2017. We found the effects of average temperature on DLI in Guadalcanal Province at lag of one month (IRR: 2.186, 95% CI: 1.094-4.368). Rainfall had minor but consistent effect in all provinces. La Niña associated with increased DLI risks in Guadalcanal Province (IRR: 4.537, 95% CI: 2.042-10.083), whereas El Niño associated with risk reduction ranging from 72.8% to 76.7% in both provinces. CONCLUSIONS: Owing to the effects of climate variability and ENSO on DLI, defining suitable and sustainable measures to control dengue transmission and enhancing community resilience against climate change in low- and middle-developed countries are important.


Asunto(s)
Dengue , El Niño Oscilación del Sur , Humanos , Temperatura , Incidencia , Melanesia/epidemiología , Dengue/epidemiología
6.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298111

RESUMEN

Spinal epidural fibrosis is one of the typical features attributable to failed back surgery syndrome, with excessive scar development in the dura and nerve roots. The microRNA-29 family (miR-29s) has been found to act as a fibrogenesis-inhibitory factor that reduces fibrotic matrix overproduction in various tissues. However, the mechanistic basis of miRNA-29a underlying the overabundant fibrotic matrix synthesis in spinal epidural scars post-laminectomy remained elusive. This study revealed that miR-29a attenuated lumbar laminectomy-induced fibrogenic activity, and epidural fibrotic matrix formation was significantly lessened in the transgenic mice (miR-29aTg) as compared with wild-type mice (WT). Moreover, miR-29aTg limits laminectomy-induced damage and has also been demonstrated to detect walking patterns, footprint distribution, and moving activity. Immunohistochemistry staining of epidural tissue showed that miR-29aTg was a remarkably weak signal of IL-6, TGF-ß1, and DNA methyltransferase marker, Dnmt3b, compared to the wild-type mice. Taken together, these results have further strengthened the evidence that miR-29a epigenetic regulation reduces fibrotic matrix formation and spinal epidural fibrotic activity in surgery scars to preserve the integrity of the spinal cord core. This study elucidates and highlights the molecular mechanisms that reduce the incidence of spinal epidural fibrosis, eliminating the risk of gait abnormalities and pain associated with laminectomy.


Asunto(s)
Interleucina-6 , MicroARNs , Ratones , Animales , Interleucina-6/genética , Factor de Crecimiento Transformador beta1/genética , Laminectomía/efectos adversos , Cicatriz/genética , Epigénesis Genética , MicroARNs/genética , Fibrosis , Ratones Transgénicos , Marcha
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203391

RESUMEN

Preeclampsia (PE) remains one of the leading causes of maternal and perinatal morbidity and mortality. However, the exact pathophysiology of PE is still unclear. The recent widely accepted notion that successful pregnancy relies on maternal immunological adaptation is of utmost importance. Moreover, salt-inducible kinase 3 (SIK3) is an AMP-activated protein kinase-related kinase, and it has reported a novel regulator of energy and inflammation, and its expression related with some diseases. To explore whether SIK3 expression correlated with PE, we analyzed SIK3 gene expression and its association with PE through GEO datasets. We identified that SIK3 was significantly downregulated in PE across four datasets (p < 0.05), suggesting that SIK3 participated in the pathogenesis of PE. We initially demonstrated the significant downregulation of SIK3 in trophoblast cells of PE. SIK3 downregulation was positively correlated with the increased number of CD204(+) cells in in vivo and in vitro experiments. The increased number of CD204(+) cells could inhibit the migration and invasion of trophoblast cells. We then clarified the potential mechanism of PE with SIK3 downregulation: M2 skewing was triggered by trophoblast cells derived via the CCL24/CCR3 axis, leading to an increase in CD204(+) cells, a decrease in phagocytosis, and the production of IL-10 at the maternal-fetal interface of the placenta with PE. IL-10 further contributed to a reduction in the migration and invasion of trophoblast cells. It also established a feedback loop wherein trophoblast cells increased CCL24 production to maintain M2 dominance in the placental environments of PE.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Preeclampsia/genética , Interleucina-10 , Regulación hacia Abajo , Quinasas de la Proteína-Quinasa Activada por el AMP , Quimiocina CCL24
8.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681853

RESUMEN

In recent years, several publications reported that nanoparticles larger than the kidney filtration threshold were found intact in the urine after being injected into laboratory mice. This theoretically should not be possible, as it is widely known that the kidneys prevent molecules larger than 6-8 nm from escaping into the urine. This is interesting because it implies that some nanoparticles can overcome the size limit for renal clearance. What kinds of nanoparticles can "bypass" the glomerular filtration barrier and cross into the urine? What physical and chemical characteristics are essential for nanoparticles to have this ability? And what are the biomolecular and cellular mechanisms that are involved? This review attempts to answer those questions and summarize known reports of renal-clearable large nanoparticles.


Asunto(s)
Barrera de Filtración Glomerular , Riñón/fisiología , Nanopartículas , Animales , Ratones
9.
Zhongguo Zhong Yao Za Zhi ; 40(20): 4052-7, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-27062826

RESUMEN

To investigate the effect and possible mechanism of echinacoside-containing serum on the osteogenic differentiation in rat bone marrow mesenchymal stem cells. Rat bone marrow mesenchymal stem cells were cultivated by the whole bone marrow adherence method. The 3rd generation of cells were divided into 3 groups: the blank control group, the classic osteogenic-induced group and the 10% echinacoside-containing serum group. The expression of alkaline phosphatase and osteocalcin were detected by ELISA. The ex- pression of ZHX, protein was detected by Western blot technique. RT-PCR technique was used to detect the expression of ZHX3mRNA. According to the result, the expressions of the alkaline phosphatase and osteocalcin in the classic osteogenic-induced group and the 10% echinacoside-containing serum group were significantly higher than that of the blank control group (P <0. 01). And expressions of the alkaline phosphatase activity and osteocalcin in the 10% echinacoside-containing serum group were significantly higher than that in the classic osteogenic-induced group (P < 0.01). Meanwhile, the classic osteogenic-induced group and the 10% echinacoside-containing serum group showed obviously higher ZHX3 protain and mRNA expression than that of the black control group, with significant differences (P < 0.01); the 10% echinacoside-containing serum group showed obviously higher ZHX3 protain and mRNA expression than that of the classic osteogenic-induced group, with a significant difference (P < 0.01). In conclusion, 10% echinacoside-containing serum can promote the differentiation of the bone marrow mesenchymal stem cells cultured in vitro. Its mechanism may be correlated with the increase in the ZHX3expression.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glicósidos/farmacología , Proteínas de Homeodominio/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Factores de Transcripción/genética , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Glicósidos/sangre , Proteínas de Homeodominio/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley , Suero/química , Factores de Transcripción/metabolismo
10.
J Autism Dev Disord ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088144

RESUMEN

Studies have reported inconsistent results regarding associations between parental depression and offspring neurodevelopmental disorders, such as developmental delay and autism spectrum disorder (ASD). In all, 7,593 children who were born between 1996 and 2010 in Taiwan and had at least one parent with major depressive disorder and 75,930 birth-year- and sex-matched children of parents without major depressive disorder were followed from 1996 or time of birth to the end of 2011. Intergroup differences in neurodevelopmental conditions-including ASD, attention-deficit hyperactivity disorder (ADHD), tic disorder, developmental delay, and intellectual disability (ID)-were assessed. Compared with the children in the control group, the children of parents with major depression were more likely [hazard ratio (HR), 95% confidence interval (CI)] to develop ADHD (1.98, 1.80-2.18), ASD (1.52, 1.16-1.94), tic disorder (1.40, 1.08-1.81), developmental delay (1.32, 1.20-1.45), and ID (1.26, 1.02-1.55). Parental depression was associated with offspring neurodevelopmental disorders, specifically ASD, ADHD, developmental delay, ID, and tic disorder. Therefore, clinicians should closely monitor the neurodevelopmental conditions of children of parents with depression.

11.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671918

RESUMEN

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

12.
Eur J Radiol Open ; 12: 100534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39022614

RESUMEN

Purpose: This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning-based image reconstruction (DLIR) in patients with head and neck cancer. Method: Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum. Results: DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5-105.6 %) and contrast-to-noise ratio (10.5-107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p < 0.001). Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V. The lymph node margins and vessels on DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p < 0.05). Both readers agreed that DLIR had a better image quality than the conventional reconstruction algorithms. Conclusion: DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.

13.
Cells ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667309

RESUMEN

Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson's disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The most resistant line was selected for transcriptome profiling, revealing specific genes potentially influencing the resistant characteristic. We then conducted protein validation and molecular biological studies to validate the related pathways as the influential factor. Cybrids carrying the W3 mtDNA haplogroup demonstrated the most resistance to the MPP+ treatment. In the transcriptome study, PPP1R15A was identified, while further study noted elevated expressions of the coding protein GADD34 across all cybrids. In the study of GADD34-related mitochondrial unfolding protein response (mtUPR), we found that canonical mtUPR, launched by the phosphate eIF2a, is involved in the resistant characteristic of specific mtDNA to MPP+ treatment. Our study suggests that a lower expression of GADD34 in the late phase of mtUPR may prolong the mtUPR process, thereby benefitting protein homeostasis and facilitating cellular resistance to PD development. We herein demonstrate that GADD34 plays an important role in PD development and should be further investigated as a target for the development of therapies for PD.


Asunto(s)
ADN Mitocondrial , Haplotipos , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Humanos , ADN Mitocondrial/genética , Haplotipos/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Respuesta de Proteína Desplegada/genética
14.
Mitochondrion ; 76: 101856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408618

RESUMEN

Mitochondria are important for maintaining cellular energy metabolism and regulating cellular senescence. Mitochondrial DNA (mtDNA) encodes subunits of the OXPHOS complexes which are essential for cellular respiration and energy production. Meanwhile, mtDNA variants have been associated with the pathogenesis of neurodegenerative diseases, including MELAS, for which no effective treatment has been developed. To alleviate the pathological conditions involved in mitochondrial disorders, mitochondria transfer therapy has shown promise. Wharton's jelly mesenchymal stem cells (WJMSCs) have been identified as suitable mitochondria donors for mitochondria-defective cells, wherein mitochondrial functions can be rescued. Miro1 participates in mitochondria trafficking by anchoring mitochondria to microtubules. In this study, we identified Miro1 over-expression as a factor that could help to enhance the efficiency of mitochondrial delivery. More specifically, we reveal that Miro1 over-expressed WJMSCs significantly improved intercellular communications, cell proliferation rates, and mitochondrial membrane potential, while restoring mitochondrial bioenergetics in mitochondria-defective fibroblasts. Furthermore, Miro1 over-expressed WJMSCs decreased rates of induced apoptosis and ROS production in MELAS fibroblasts; although, Miro1 over-expression did not rescue mtDNA mutation ratios nor mitochondrial biogenesis. This study presents a potentially novel therapeutic strategy for treating mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and other diseases associated with dysfunctional mitochondria, while the pathophysiological relevance of our results should be further verified by animal models and clinical studies.


Asunto(s)
Células Madre Mesenquimatosas , Mitocondrias , Gelatina de Wharton , Proteínas de Unión al GTP rho , Humanos , Apoptosis , Proliferación Celular , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Potencial de la Membrana Mitocondrial , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Gelatina de Wharton/citología
15.
APL Bioeng ; 8(3): 036110, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39165611

RESUMEN

Cartilage damage, a common cause of osteoarthritis, requires medical imaging for accurate diagnosis of pathological changes. However, current instruments can acquire limited imaging information due to sensitivity and resolution issues. Therefore, multimodal imaging is considered an alternative strategy to provide valuable images and analyzes from different perspectives. Among all biomaterials, gold nanomaterials not only exhibit outstanding benefits as drug carriers, in vitro diagnostics, and radiosensitizers, but are also widely used as contrast agents, particularly for tumors. However, their potential for imaging cartilage damage is rarely discussed. In this study, we developed a versatile iodinated gadolinium-gold nanomaterial, AuNC@BSA-Gd-I, and its radiolabeled derivative, AuNC@BSA-Gd-131I, for cartilage detection. With its small size, negative charge, and multimodal capacities, the probe can penetrate damaged cartilage and be detected or visualized by computed tomography, MRI, IVIS, and gamma counter. Additionally, the multimodal imaging potential of AuNC@BSA-Gd-I was compared to current multifunctional gold nanomaterials containing similar components, including anionic AuNC@BSA, AuNC@BSA-I, and AuNC@BSA-Gd as well as cationic AuNC@CBSA. Due to their high atomic numbers and fluorescent emission, AuNC@BSA nanomaterials could provide fundamental multifunctionality for imaging. By further modifying AuNC@BSA with additional imaging materials, their application could be extended to various types of medical imaging instruments. Nonetheless, our findings showed that each of the current nanomaterials exhibited excellent abilities for imaging cartilage with their predominant imaging modalities, but their versatility was not comparable to that of AuNC@BSA-Gd-I. Thus, AuNC@BSA-Gd-I could be served as a valuable tool in multimodal imaging strategies for cartilage assessment.

16.
Biochim Biophys Acta ; 1820(11): 1744-52, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22846226

RESUMEN

BACKGROUND: Tumor-associated NADH oxidase (tNOX; ENOX2) is a growth-related protein expressed in transformed cells. High concentrations of numerous chemotherapeutic agents have shown to inhibit tNOX activity and protein levels leading to a reduction in cell growth while little is known for the effects of low concentrations of chemotherapeutic agents on tNOX expression. METHODS: Effects of chemotherapeutic agents on cell function were evaluated with traditional in vitro assays and the xCELLigence System. Western blot analyses were used to study protein expression profiles of the epithelial-to-mesenchymal transition. RESULTS: We showed that doxorubicin treatment transiently up-regulates tNOX expression in human lung carcinoma A549 cells in association with enhanced cell migration. Similar results were observed in tamoxifen-exposed A549 cells. Furthermore, protein marker analyses revealed that the enhanced migration induced by tamoxifen was correlated with epithelial-to-mesenchymal transition, as evidenced by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Importantly, tNOX overexpression enhanced cell migration, confirming the essential role of tNOX in cell migration. CONCLUSIONS: Based on these findings, we conclude that doxorubicin and tamoxifen induce a transient up-regulation of tNOX expression, leading to enhanced cell migration and EMT. GENERAL SIGNIFICANCE: These findings establish an essential role for tNOX in cell migration and survival and may provide a rational framework for the further development of tNOX inhibitors as a novel class of antitumor agents.


Asunto(s)
Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , NADH NADPH Oxidorreductasas/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Ratones , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/genética , Estrés Oxidativo , Tamoxifeno/farmacología , Regulación hacia Arriba
17.
mBio ; 14(2): e0009323, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36946727

RESUMEN

Pathogenic fungi convert chitin to chitosan to evade plant perception and disarm chitin-triggered immune responses. Whether plants have evolved factors to counteract this evasion mechanism remains obscure. Here, we decipher the mechanism underlying the antifungal activity of maize secretory mannose-binding cysteine-rich receptor-like secreted protein (CRRSP), antifungal protein 1 (AFP1). AFP1 binds to multiple sites on the surface of sporidial cells, filaments, and germinated spores of the biotrophic fungus Ustilago maydis. It inhibits cell growth and budding, as well as spore germination. AFP1 promiscuously interacts with most chitin deacetylases (CDAs) by recognizing the conserved NodB domain to interfere with the enzyme activity. Deletion of O-mannosyltransferase 4 decreases protein mannosylation, which correlates with reduced AFP1 binding and antifungal activity, suggesting that AFP1 interacts with mannosylated proteins to exhibit an inhibitory effect. AFP1 also has extended inhibitory activity against Saccharomyces cerevisiae; however, AFP1 did not reduce binding to the double ΔΔcda1,2 mutant, suggesting the targets of AFP1 have expanded to other cell surface glycoproteins, probably facilitated by its mannose-binding property. Increasing chitin levels by modulating the activity of cell surface glycoproteins is a universal feature of AFP1 interacting with a broad spectrum of fungi to inhibit their growth. IMPORTANCE Plants alert immune systems by recognizing the fungal pathogen cell wall component chitin via pattern recognition cell surface receptors. Successful fungal pathogens escape the perception by deacetylating chitin to chitosan, which is also necessary for fungal cell development and virulence. Targeting glycoproteins that are associated with regulating chitin metabolism and maintaining cell wall morphogenesis presents an effective strategy to combat fungal pathogens by simultaneously altering cell wall plasticity, activating chitin-triggered immunity, and impairing fungal viability. Our study provides molecular insights into a plant DUF26 domain-containing secretory protein in warding off a broad range of fungal pathogens by acting on more than one glycoprotein target.


Asunto(s)
Quitina , Quitosano , Quitina/metabolismo , Antifúngicos/metabolismo , Zea mays/microbiología , Manosa , Glicoproteínas , Glicoproteínas de Membrana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pared Celular/metabolismo
18.
Life (Basel) ; 13(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37763347

RESUMEN

BACKGROUND: The International Society of Urological Pathology (ISUP) grade and positive surgical margins (PSMs) after radical prostatectomy (RP) may reflect the prognosis of prostate cancer (PCa) patients. This study aimed to investigate whether DCE-MRI parameters (i.e., Ktrans, kep, and IAUC) could predict ISUP grade and PSMs after RP. METHOD: Forty-five PCa patients underwent preoperative DCE-MRI. The clinical characteristics and DCE-MRI parameters of the 45 patients were compared between the low- and high-risk (i.e., ISUP grades III-V) groups and between patients with or without PSMs after RP. Multivariate logistic regression analysis was used to identify the significant predictors of placement in the high-risk group and PSMs. RESULTS: The DCE parameter Ktrans-max was significantly higher in the high-risk group than in the low-risk group (p = 0.028) and was also a significant predictor of placement in the high-risk group (odds ratio [OR] = 1.032, 95% confidence interval [CI] = 1.005-1.060, p = 0.021). Patients with PSMs had significantly higher prostate-specific antigen (PSA) titers, positive biopsy core percentages, Ktrans-max, kep-median, and kep-max than others (all p < 0.05). Of these, positive biopsy core percentage (OR = 1.035, 95% CI = 1.003-1.068, p = 0.032) and kep-max (OR = 1.078, 95% CI = 1.012-1.148, p = 0.020) were significant predictors of PSMs. CONCLUSION: Preoperative DCE-MRI parameters, specifically Ktrans-max and kep-max, could potentially serve as preoperative imaging biomarkers for postoperative PCa prognosis based on their predictability of PCa risk group and PSM on RP, respectively.

19.
Nat Commun ; 14(1): 5755, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716995

RESUMEN

The diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La's conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.


Asunto(s)
Basidiomycota , Virulencia , Proteínas de la Membrana , Saccharomyces cerevisiae , Fenoles
20.
Chin J Integr Med ; 29(11): 1021-1032, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815728

RESUMEN

BACKGROUND: Currently, more and more infertility couples are opting for combined acupuncture to improve success rate of in vitro fertilization (IVF). However, evidence from acupuncture for improving IVF pregnancy outcomes remains a matter of debate. OBJECTIVE: To quantitatively summarized the evidence of the efficacy of acupuncture among women undergoing IVF by means of systematic review and meta-analysis. METHODS: Four English (PubMed, Web of Science, EMBASE, and Cochrane Register of Controlled Clinical Trials) and Four Chinese databases (Wanfang Databases, Chinese National Knowledge Infrastructure, Chinese Science and Technology Periodical Database, and SinoMed) were searched from database inception until July 2, 2023. Randomized controlled trials (RCTs) that evaluated the acupuncture's effects for women undergoing IVF were included. The subgroup analysis was conducted with respect to the age of participants, different acupuncture types, type of control, acupuncture timing, geographical origin of the study, whether or not repeated IVF failure, and acupuncture sessions. Sensitivity analyses were predefifined to explore the robustness of results. The primary outcomes were clinical pregnancy rate (CPR) and live birth rate (LBR), and the secondary outcomes were ongoing pregnancy rate and miscarriage rate. Random effects model with I2 statistics were used to quantify heterogeneity. Publication bias was estimated by funnel plots and Egger's tests. RESULTS: A total of 58 eligible RCTs representing 10,968 women undergoing IVF for pregnant success were identifified. Pooled CPR and LBR showed a signifificant difference between acupuncture and control groups [69 comparisons, relative risk (RR) 1.19, 95% confifidence intervals (CI) 1.12 to 1.25, I2=0], extremely low evidence; 23 comparisons, RR 1.11, 95%CI 1.02 to 1.21, I2=14.6, low evidence, respectively). Only transcutaneous electrical acupoint stimulation showed a positive effect on both CPR (16 comparisons, RR 1.17, 95%CI 1.06 to 1.29; I2=0, moderate evidence) and LBR (9 comparisons, RR 1.20, 95%CI 1.04 to 1.37; I2=8.5, extremely low evidence). Heterogeneity across studies was found and no studies were graded as high-quality evidence. CONCLUSION: Results showed that the convincing evidence levels on the associations between acupuncture and IVF pregnant outcomes were relatively low, and the varied methodological design and heterogeneity might inflfluence the fifindings. (Registration No. PROSPERO CRD42021232430).


Asunto(s)
Aborto Espontáneo , Terapia por Acupuntura , Embarazo , Femenino , Humanos , Nacimiento Vivo , Fertilización In Vitro/métodos , Resultado del Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA