Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803114

RESUMEN

Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.

2.
BMC Plant Biol ; 23(1): 55, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698063

RESUMEN

Drought is a major abiotic stress to rice (Oryza sativa) during growth. Ideal Plant Architecture (IPA1), the first cloned gene controlling the ideal plant type in rice, has been reported to function in both ideal rice plant architecture and biotic resistance. Here, we report that the IPA1/OsSPL14, encoding a transcriptional factor, positively regulates drought tolerance in rice. The IPA1 is constitutively expressed and regulated by H2O2, abscisic acid, NaCl and polyethylene glycol 6000 treatments in rice. Furthermore, the IPA1-knockout plants showed much greater accumulation of H2O2 as measured by 3,3'-diaminobenzidine staining in leaves compared with WT plants. Yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays indicated that the IPA1 directly activates the promoter of SNAC1. Expression of SNAC1 is significantly down-regulated in IPA1 knockout plants. Further investigation indicated that the IPA1 plays a positive role in drought-stress tolerance by inducing reactive oxygen species scavenging in rice. Together, these findings indicated that the IPA1 played important roles in drought tolerance by regulating SNAC1, thus activating the antioxidant system in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Resistencia a la Sequía , Plantas Modificadas Genéticamente/genética , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas
3.
Mol Breed ; 42(3): 13, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309407

RESUMEN

The induction of embryogenic calli plays a vital role in the genetic transformation and regeneration of rice (Oryza sativa L.). Despite progress in rice tissue culture, the molecular mechanisms of embryogenic callus induction remain unknown. In this study, gene expression profiles associated with calli were comprehensively analyzed during callus induction of japonica rice 'Yunyin'. We first confirmed that NMB medium with 24 h of light and 0 h of dark (NMB-L) was the optimal condition for 'Yunyin' callus induction, while J3 medium with 0 h of light and 24 h of dark (J3-D) was the worst condition. After transcriptome analysis, 33,597 unigenes were assembled, among which we identified 6,063 DEGs (Differentially Expressed Genes) related to media and seven DEGs related to photoperiod. Phenylpropanoid biosynthesis, plant hormone signal, and starch and sucrose metabolism were the top three pathways affected by media, while the circadian rhythm-plant pathway was associated with photoperiod. Furthermore, we identified two candidate genes, Os01g0965900 and Os12g0555200, affected by both medium and photoperiod. Statistical analysis of RNA-seq libraries showed that the expression levels of these two genes in J3-D calli were over 2.5 times higher than those in NMB-L calli, which was further proved by RT-qPCR analysis. Based on FPKM (Fragments Per Kilobase of transcript Per Million mapped reads), unigenes belonging to the NMB-L group were mainly assigned to ribosome, carbon metabolism, biosynthesis of amino acids, protein processing in endoplasmic reticulum, and plant hormone signal transduction pathways. We transformed Os12g0555200Nip and Os12g05552009311 into 'Nipponbare' calli and observed their effects on the growth and development process of rice calli using TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Observations showed that Os12g05552009311 was more disadvantageous to rice callus growth than Os12g0555200Nip. Our results reveal that the Os12g0555200, identified from transcriptomic profiles, has a negative influence during 'Yunyin' callus induction. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-022-01283-y.

4.
BMC Plant Biol ; 21(1): 287, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167489

RESUMEN

BACKGROUND: Phosphoenolpyruvate carboxylase (PEPC) plays an important role in the primary metabolism of higher plants. Several studies have revealed the critical importance of PEPC in the interaction of carbon and nitrogen metabolism. However, the function mechanism of PEPC in nitrogen metabolism is unclear and needs further investigation. RESULTS: This study indicates that transgenic rice expressing the sugarcane C4-PEPC gene displayed shorter primary roots and fewer crown roots at the seedling stage. However, total nitrogen content was significantly higher in transgenic rice than in wild type (WT) plants. Proteomic analysis revealed that there were more differentially expressed proteins (DEPs) responding to nitrogen changes in transgenic rice. In particular, the most enriched pathway "glutathione (GSH) metabolism", which mainly contains GSH S-transferase (GST), was identified in transgenic rice. The expression of endogenous PEPC, GST and several genes involved in the TCA cycle, glycolysis and nitrogen assimilation changed in transgenic rice. Correspondingly, the activity of enzymes including GST, citrate synthase, 6-phosphofructokinase, pyruvate kinase and ferredoxin-dependent glutamate synthase significantly changed. In addition, the levels of organic acids in the TCA cycle and carbohydrates including sucrose, starch and soluble sugar altered in transgenic rice under different nitrogen source concentrations. GSH that the substrate of GST and its components including glutamic acid, cysteine and glycine accumulated in transgenic rice. Moreover, the levels of phytohormones including indoleacetic acid (IAA), zeatin (ZT) and isopentenyladenosine (2ip) were lower in the roots of transgenic rice under total nutrients. Taken together, the phenotype, physiological and biochemical characteristics of transgenic rice expressing C4-PEPC were different from WT under different nitrogen levels. CONCLUSIONS: Our results revealed the possibility that PEPC affects nitrogen metabolism through regulating GST, which provide a new direction and concepts for the further study of the PEPC functional mechanism in nitrogen metabolism.


Asunto(s)
Glutatión Transferasa/metabolismo , Nitrógeno/metabolismo , Oryza/enzimología , Fosfoenolpiruvato Carboxilasa/metabolismo , Saccharum/enzimología , Carbono/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Plantas Modificadas Genéticamente , Proteómica , Saccharum/genética , Transcriptoma
5.
Plant Sci ; 331: 111674, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948404

RESUMEN

Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Esfingolípidos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Inmunidad de la Planta/genética , Oryza/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
6.
Gene ; 838: 146708, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35772655

RESUMEN

The glycosyltransferase 64 (GT64) family is widely conserved in many species, including animals and plants. The functions of GT64 family genes in animals have been well characterized in the biosynthesis of extracellular heparan sulfate, whereas two GT64 members in Arabidopsis thaliana are involved in the glycosylation of plasma membrane glycosylinositol phosphorylceramides (GIPCs). GIPCs are the main components of plant sphingolipids and serve as important signal molecules in various developmental processes and stress responses. Rice (Oryza sativa), a model monocot plant, contains four GT64 members in its genome. Using phylogenetic analysis, 73 GT64s from 19 plant species were divided into three main groups. Each group can be represented by the three members in Arabidopsis and show a trend of monocot-eudicot divergence. A promoter and genomic variation analysis of GT64s in rice showed that various stress-related regulatory elements exist in their promoters, and many sequence variations were found between the two main rice subspecies, japonica and indica. Additionally, transmembrane domain and subcellular localization analyses revealed that these genes all encode membrane-bound glycosyltransferases and are localized to the Golgi apparatus. Finally, expression analysis of the four GT64 genes in rice, as assessed by quantitative real-time PCR, showed that they have distinct tissue-specific expression patterns and respond to different hormone treatments or abiotic stresses. Our results indicated that this family of genes may play a role in different stress responses and hormone signaling pathways in rice, which will provide fundamental information for further investigation of their functions in future.


Asunto(s)
Arabidopsis , Oryza , Animales , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hormonas/metabolismo , Familia de Multigenes , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
7.
Mol Plant ; 15(12): 1931-1946, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36321201

RESUMEN

Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.


Asunto(s)
Oryza , Dominios Homologos src , Oryza/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA