Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(6): 1530-1541.e8, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216462

RESUMEN

Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire-pre- and post-vaccination-and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Norovirus/inmunología , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/química , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Línea Celular , Secuencia Conservada , Epítopos/química , Epítopos/inmunología , Humanos , Inmunoglobulina G/inmunología , Modelos Moleculares , Norovirus/clasificación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/inmunología , Vacunación
2.
J Infect Dis ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042731

RESUMEN

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.

3.
Emerg Infect Dis ; 30(1): 163-167, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063078

RESUMEN

We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Gastroenteritis/epidemiología , Norovirus/genética , Infecciones por Caliciviridae/epidemiología , Genotipo , Pandemias , Filogenia
4.
J Infect Dis ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781879

RESUMEN

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle (VLP) norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs. GII.2 heterotypic responses to vaccination and infection. Three serological assays (VLP-binding, histoblood group antigen-blocking, and neutralizing) were performed for each genotype. Results were highly correlated within a genotype but not between genotypes. Although the vaccine provided protection from GII.2-associated disease, little GII.2-specific neutralization occurred after vaccination. Choice of antibody assay can affect assessments of human norovirus vaccine immunogenicity.

5.
J Infect Dis ; 225(1): 105-115, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34129046

RESUMEN

BACKGROUND: The role of histo-blood group on the burden and severity of norovirus gastroenteritis in young infants has not been well documented. METHODS: Norovirus gastroenteritis was assessed in 443 Nicaraguan children followed from birth until 3 years of age. Stool samples were tested for norovirus by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and histo-blood group antigens (HBGAs) were determined by phenotyping of saliva and blood. Hazard ratios and predictors of norovirus acute gastroenteritis (AGE) outcome stratified by HBGA were estimated using Cox proportional hazards models. RESULTS: Of 1353 AGE episodes experienced by children, 229 (17%) tested positive for norovirus with an overall incidence of 21.9/100 child-years. Secretor children were infected as early as 2 months of age and had a higher incidence of norovirus GII compared to nonsecretor children (15.4 vs 4.1/100 child-years, P = .006). Furthermore, all GII.4 AGE episodes occurred in secretor children. Children infected with GI (adjusted odds ratio [aOR], 0.09 [95% confidence interval {CI}, .02-.33]) or non-GII.4 viruses (aOR, 0.2 [95% CI, .07-.6]) were less likely to have severe AGE compared to GII.4-infected children. CONCLUSIONS: Secretor status in children strongly influences the incidence of symptomatic norovirus infection in a genogroup or genotype-dependent manner and provides evidence that clinical severity in children depends on norovirus genotypes.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Caliciviridae/epidemiología , Heces/virología , Norovirus/aislamiento & purificación , Saliva/virología , Adulto , Cohorte de Nacimiento , Antígenos de Grupos Sanguíneos/efectos adversos , Infecciones por Caliciviridae/diagnóstico , Femenino , Gastroenteritis/epidemiología , Genotipo , Humanos , Incidencia , Lactante , Masculino , Nicaragua/epidemiología , Norovirus/genética , Virus Norwalk , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
6.
J Infect Dis ; 226(10): 1771-1780, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35137154

RESUMEN

BACKGROUND: Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS: Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain virus (SMV) GII.2 norovirus inoculum (1.2 × 104 to 1.2 × 107 genome equivalent copies [GEC]; n = 38) or placebo (n = 6). Illness was defined as diarrhea and/or vomiting postchallenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV immunoglobulin G [IgG] seroconversion). RESULTS: The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between prechallenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary immunoglobulin A and infection. The median infectious dose (ID50) was 5.1 × 105 GEC. CONCLUSIONS: High rates of infection and illness were observed in both secretor-positive and secretor-negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics. CLINICAL TRIALS REGISTRATION: NCT02473224.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Adulto , Humanos , Norovirus/genética , Diarrea , Genotipo , Inmunoglobulina G
7.
PLoS Pathog ; 16(4): e1008242, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251490

RESUMEN

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Asunto(s)
Infecciones por Caliciviridae/virología , Especificidad del Huésped , Interacciones Huésped-Patógeno , Norovirus/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Animales , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norovirus/crecimiento & desarrollo , Receptores Inmunológicos/fisiología , Tropismo Viral
8.
BMC Med ; 19(1): 299, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753508

RESUMEN

BACKGROUND: To reduce the coronavirus disease burden in England, along with many other countries, the government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. METHODS: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. RESULTS: We report that susceptibility to norovirus infection has likely increased between March 2020 and mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels, the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels, there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. CONCLUSIONS: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced.


Asunto(s)
COVID-19 , Norovirus , Inglaterra/epidemiología , Humanos , Modelos Teóricos , SARS-CoV-2
9.
J Infect Dis ; 221(6): 919-926, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628848

RESUMEN

BACKGROUND: Human noroviruses (HuNoV) are the leading cause of gastroenteritis. No vaccine is currently available to prevent norovirus illness or infection. Safe, infectious challenge strains are needed to assess vaccine efficacy in the controlled human infection model (CHIM). METHODS: A stock of HuNoV strain Norwalk virus ([NV] GI.1) was prepared. Healthy, genetically susceptible adults were inoculated with NV Lot 001-09NV and monitored for infection, gastroenteritis symptoms, and immune responses. RESULTS: Lot 001-09NV induced gastroenteritis in 9 (56%) and infection in 11 (69%) of 16 genetically susceptible subjects. All infected subjects developed strong immune responses to GI.1 with a 30-fold (geometric mean titer) increase in blocking titers (BT50) and a 161-fold increase in GI.1-specific immunoglobulin (Ig)G titers when compared with baseline. GI.1-specific cellular responses in peripheral blood were observed 9 days postchallenge with an average of 3253 IgA and 1227 IgG antibody-secreting cells per million peripheral blood mononuclear cells. CONCLUSIONS: GI.1 Lot 001-09NV appears to be similar in virulence to previous passages of NV strain 8fIIa. The safety profile, attack rate, and duration of illness make GI.1 Lot 001-09NV a useful challenge strain for future vaccine studies aimed at establishing immune correlates.


Asunto(s)
Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/virología , Gastroenteritis/prevención & control , Gastroenteritis/virología , Virus Norwalk/clasificación , Vacunas Virales/inmunología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30355694

RESUMEN

Emergent strains of human norovirus seed pandemic waves of disease. These new strains have altered ligand binding and antigenicity characteristics. Study of viral variants isolated from immunosuppressed patients with long-term norovirus infection indicates that initial virus in vivo evolution occurs at the same antigenic sites as in pandemic strains. Here, cellular ligand binding and antigenicity of two cocirculating strains isolated from a patient with long-term norovirus infection were characterized. The isolated GII.4 viruses differed from previous strains and from each other at known blockade antibody epitopes. One strain had a unique sequence in epitope D, including loss of an insertion at residue 394, corresponding to a decreased relative affinity for carbohydrate ligands. Replacement of 394 with alanine or restoration of the contemporary strain epitope D consensus sequence STT improved ligand binding relative affinity. However, monoclonal antibody blockade of binding potency was only gained for the consensus sequence, not by the alanine insertion. In-depth study of unique changes in epitope D indicated that ligand binding, but not antibody blockade of ligand binding, is maintained despite sequence diversity, allowing escape from blockade antibodies without loss of capacity for binding cellular ligands.IMPORTANCE Human norovirus causes ∼20% of all acute gastroenteritis and ∼200,000 deaths per year, primarily in young children. Most epidemic and all pandemic waves of disease over the past 30 years have been caused by type GII.4 human norovirus strains. The capsid sequence of GII.4 strains is changing over time, resulting in viruses with altered ligand and antibody binding characteristics. The carbohydrate binding pocket of these strains does not vary over time. Here, utilizing unique viral sequences, we study how residues in GII.4 epitope D balance the dual roles of variable antibody binding site and cellular ligand binding stabilization domain, demonstrating that amino acid changes in epitope D can result in loss of antibody binding without ablating ligand binding. This flexibility in epitope D likely contributes to GII.4 strain persistence by both allowing escape from antibody-mediated herd immunity and maintenance of cellular ligand binding and infectivity.


Asunto(s)
Anticuerpos Bloqueadores/metabolismo , Infecciones por Caliciviridae/inmunología , Proteínas de la Cápside/genética , Epítopos/inmunología , Mutación INDEL , Norovirus/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Niño , Epítopos/genética , Heces/virología , Humanos , Inmunidad Colectiva , Ligandos , Norovirus/genética , Norovirus/inmunología , Unión Proteica
11.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29540599

RESUMEN

Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/prevención & control , Encefalomielitis Equina Venezolana/virología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Síndrome Respiratorio Agudo Grave/prevención & control , Síndrome Respiratorio Agudo Grave/virología , Células Vero , Zoonosis/prevención & control , Zoonosis/virología
12.
J Infect Dis ; 217(7): 1145-1152, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29281104

RESUMEN

Background: Human noroviruses are the leading cause of acute gastroenteritis. Strains of the GII.4 genotype cause pandemic waves associated with viral evolution and subsequent antigenic drift and ligand-binding modulation. In November 2015, a novel GII.4 Sydney recombinant variant (GII.P16-GII.4 Sydney) emerged and replaced GII.Pe-GII.4 Sydney as the predominant cause of acute gastroenteritis in the 2016-2017 season in the United States. Methods: Virus-like particles of GII.4 2012 and GII.4 2015 were compared for ligand binding and antibody reactivity, using a surrogate neutralization assay. Results: Residue changes in the capsid between GII.4 2012 and GII.4 2015 decreased the potency of human polyclonal sera and monoclonal antibodies. A change in epitope A resulted in the complete loss of reactivity of a class of blockade antibodies and reduced levels of a second antibody class. Epitope D changes modulated monoclonal antibody potency and ligand-binding patterns. Conclusions: Substitutions in blockade antibody epitopes between GII.4 2012 and GII.4 2015 influenced antigenicity and ligand-binding properties. Although the impact of polymerases on fitness remains uncertain, antigenic variation resulting in decreased potency of antibodies to epitope A, coupled with altered ligand binding, likely contributed significantly to the spread of GII.4 2015 and its replacement of GII.4 2012 as the predominant norovirus outbreak strain.


Asunto(s)
Anticuerpos Antivirales/inmunología , Variación Antigénica , Antígenos Virales/genética , Norovirus/genética , Secuencia de Aminoácidos , Afinidad de Anticuerpos , Modelos Moleculares , Norovirus/clasificación , Unión Proteica , Conformación Proteica
13.
J Infect Dis ; 215(6): 984-991, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453838

RESUMEN

Background: Development of high avidity, broadly neutralizing antibodies (Abs) is a priority after vaccination against rapidly evolving, widely disseminated viruses like human norovirus. After vaccination with a multivalent GI.1 and GII.4c norovirus virus-like particle (VLP) vaccine candidate adjuvanted with alum and monophosphoryl lipid A (MPL), blockade Ab titers peaked early, with no increase in titer following a second vaccine dose. Methods: Blockade Ab relative avidity was evaluated by measuring the slope of blockade Ab neutralization curves. Results: Blockade Ab avidity to the GI.1 vaccine component peaked at day 35 (7 days after dose 2). Avidities to heterotypic genogroup I VLPs were not sustained at day 35 after vaccination or GI.1 infection, as measured from archived sera. Only secretor-positive participants maintained high avidity blockade Ab to GI.1 at day 180. Avidity to the GII.4c vaccine component peaked at day 7, remained elevated through day 180, and was not secretor dependent. Avidity to an immunologically novel GII.4 strain VLP correlated with preexisting Ab titer to an ancestral strain Epitope A. Conclusions: Host genetics and pre-exposure history shape norovirus vaccine Ab responses, including blockade Ab avidity. Avidity of potentially neutralizing Ab may be an important metric for evaluating vaccine responses to highly penetrant viruses with cross-reactive serotypes.


Asunto(s)
Afinidad de Anticuerpos , Infecciones por Caliciviridae/prevención & control , Vacunas de Partículas Similares a Virus/uso terapéutico , Vacunas Virales/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/genética , Reacciones Cruzadas , Método Doble Ciego , Epítopos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Norovirus , Estados Unidos , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas Virales/administración & dosificación , Adulto Joven
14.
J Infect Dis ; 216(10): 1227-1234, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-28973354

RESUMEN

Background: Human norovirus is a significant public health burden, with >30 genotypes causing endemic levels of disease and strains from the GII.4 genotype causing serial pandemics as the virus evolves new ligand binding and antigenicity features. During 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in select global locations. Comparison of capsid sequences indicates that GII.17 is evolving at previously defined GII.4 antibody epitopes. Methods: Antigenicity of virus-like particles (VLPs) representative of clusters I, II, and IIIb GII.17 strains were compared by a surrogate neutralization assay based on antibody blockade of ligand binding. Results: Sera from mice immunized with a single GII.17 VLP identified antigenic shifts between each cluster of GII.17 strains. Ligand binding of GII.17 cluster IIIb VLP was blocked only by antisera from mice immunized with cluster IIIb VLPs. Exchange of residues 393-396 from GII.17.2015 into GII.17.1978 ablated ligand binding and altered antigenicity, defining an important varying epitope in GII.17. Conclusions: The capsid sequence changes in GII.17 strains result in loss of blockade antibody binding, indicating that viral evolution, specifically at residues 393-396, may have contributed to the emergence of cluster IIIb strains and the persistence of GII.17 in human populations.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Norovirus/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Bloqueadores/química , Anticuerpos Antivirales/química , Variación Antigénica , Infecciones por Caliciviridae/epidemiología , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Modelos Animales de Enfermedad , Epítopos/química , Epítopos/inmunología , Variación Genética , Cobayas , Humanos , Inmunización , Ratones , Modelos Moleculares , Norovirus/clasificación , Norovirus/genética , Norovirus/ultraestructura , Unión Proteica , Conformación Proteica , Conejos
15.
Infection ; 44(4): 551-4, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26825307

RESUMEN

Norovirus gastroenteritis in immunocompromised hosts can result in a serious and prolonged diarrheal illness. We present a case of chronic norovirus disease during rituximab-bendamustine chemotherapy for non-Hodgkin's lymphoma. We show for the first time a correlation between norovirus strain-specific antibody blockade titers and symptom improvement in an immunocompromised host.


Asunto(s)
Infecciones por Caliciviridae , Diarrea , Gastroenteritis , Norovirus , Anticuerpos Antivirales/sangre , Femenino , Humanos , Huésped Inmunocomprometido , Persona de Mediana Edad
16.
PLoS Med ; 12(3): e1001807, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25803642

RESUMEN

BACKGROUND: Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. METHODS AND FINDINGS: Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. CONCLUSIONS: Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. TRIAL REGISTRATION: ClinicalTrials.gov NCT01168401.


Asunto(s)
Anticuerpos/sangre , Formación de Anticuerpos , Infecciones por Caliciviridae/prevención & control , Gastroenteritis/prevención & control , Norovirus/inmunología , Vacunación , Vacunas Virales , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Caliciviridae/sangre , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Epítopos , Femenino , Gastroenteritis/sangre , Gastroenteritis/inmunología , Gastroenteritis/virología , Voluntarios Sanos , Humanos , Inmunización , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Norovirus/clasificación , Valores de Referencia , Especificidad de la Especie , Adulto Joven
17.
J Virol ; 88(2): 829-37, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24173225

RESUMEN

Snow Mountain virus (GII.2.1976) is the prototype strain of GII.2 noroviruses (NoVs), which cause an estimated 8% of norovirus outbreaks, yet little is known about the immunobiology of these viruses. To define the human immune response induced by SMV infection and the antigenic relationship between different GII.2 strains that have circulated between 1976 and 2010, we developed a panel of four GII.2 variant virus-like particles (VLPs) and compared their antigenicities by enzyme immunoassay (EIA) and surrogate antibody neutralization (blockade) assays. Volunteers infected with GII.2.1976 developed a mean 167-fold increase in blockade response against the homotypic VLP by day 8 postchallenge. Blockade extended cross-genotype activity in some individuals but not cross-genogroup activity. Polyclonal sera from GII.2.1976-infected volunteers blocked GII.2.1976 significantly better than they blocked GII.2.2002, GII.2.2008, and GII.2.2010, suggesting that blockade epitopes within the GII.2 strains have evolved in the past decade. To potentially map these epitope changes, we developed mouse monoclonal antibodies (MAbs) against GII.2.1976 VLPs and compared their reactivities to a panel of norovirus VLPs. One MAb had broad cross-genogroup EIA reactivity to a nonblockade, linear, conserved epitope. Six MAbs recognized conformational epitopes exclusive to the GII.2 strains. Two MAbs recognized GII.2 blockade epitopes, and both blocked the entire panel of GII.2 variants. These data indicate that the GII.2 strains, unlike the predominant GII.4 strains, have undergone only a limited amount of evolution in blockade epitopes between 1976 and 2010 and indicate that the GII.2-protective component of a multivalent norovirus vaccine may not require frequent reformulation.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Norovirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/virología , Reacciones Cruzadas , Epítopos/inmunología , Genotipo , Humanos , Ratones , Pruebas de Neutralización , Norovirus/clasificación , Norovirus/genética
18.
J Virol ; 88(13): 7256-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741081

RESUMEN

UNLABELLED: There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. IMPORTANCE: Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the protective response against multiple GII.4 strains and proposes a potential reformulation strategy to control newly emergent strains in the human population.


Asunto(s)
Variación Antigénica/inmunología , Infecciones por Caliciviridae/inmunología , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Norovirus/inmunología , Proteínas Recombinantes de Fusión/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Epítopos/genética , Humanos , Huésped Inmunocomprometido/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Norovirus/aislamiento & purificación , Conformación Proteica , Vacunas de Partículas Similares a Virus/inmunología
19.
J Virol ; 88(16): 8826-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24872579

RESUMEN

UNLABELLED: GII.4 noroviruses (NoVs) are the primary cause of epidemic viral acute gastroenteritis. One primary obstacle to successful NoV vaccination is the extensive degree of antigenic diversity among strains. The major capsid protein of GII.4 strains is evolving rapidly, resulting in the emergence of new strains with altered blockade epitopes. In addition to characterizing these evolving blockade epitopes, we have identified monoclonal antibodies (MAbs) that recognize a blockade epitope conserved across time-ordered GII.4 strains. Uniquely, the blockade potencies of MAbs that recognize the conserved GII.4 blockade epitope were temperature sensitive, suggesting that particle conformation may regulate functional access to conserved blockade non-surface-exposed epitopes. To map conformation-regulating motifs, we used bioinformatics tools to predict conserved motifs within the protruding domain of the capsid and designed mutant VLPs to test the impacts of substitutions in these motifs on antibody cross-GII.4 blockade. Charge substitutions at residues 310, 316, 484, and 493 impacted the blockade potential of cross-GII.4 blockade MAbs with minimal impact on the blockade of MAbs targeting other, separately evolving blockade epitopes. Specifically, residue 310 modulated antibody blockade temperature sensitivity in the tested strains. These data suggest access to the conserved GII.4 blockade antibody epitope is regulated by particle conformation, temperature, and amino acid residues positioned outside the antibody binding site. The regulating motif is under limited selective pressure by the host immune response and may provide a robust target for broadly reactive NoV therapeutics and protective vaccines. IMPORTANCE: In this study, we explored the factors that govern norovirus (NoV) cross-strain antibody blockade. We found that access to the conserved GII.4 blockade epitope is regulated by temperature and distal residues outside the antibody binding site. These data are most consistent with a model of NoV particle conformation plasticity that regulates antibody binding to a distally conserved blockade epitope. Further, antibody "locking" of the particle into an epitope-accessible conformation prevents ligand binding, providing a potential target for broadly effective drugs. These observations open lines of inquiry into the mechanisms of human NoV entry and uncoating, fundamental biological questions that are currently unanswerable for these noncultivatable pathogens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Norovirus/inmunología , Virión/inmunología , Sitios de Unión/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Cápside/inmunología , Proteínas de la Cápside/inmunología , Gastroenteritis/inmunología , Gastroenteritis/virología
20.
J Virol ; 88(13): 7244-55, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24648459

RESUMEN

UNLABELLED: Genogroup II, genotype 4 (GII.4) noroviruses are known to rapidly evolve, with the emergence of a new primary strain every 2 to 4 years as herd immunity to the previously circulating strain is overcome. Because viral genetic diversity is higher in chronic than in acute infection, chronically infected immunocompromised people have been hypothesized to be a potential source for new epidemic GII.4 strains. However, while some capsid protein residues are under positive selection and undergo patterned changes in sequence variation over time, the relationships between genetic variation and antigenic variation remains unknown. Based on previously published GII.4 strains from a chronically infected individual, we synthetically reconstructed virus-like particles (VLPs) representing early and late isolates from a small-bowel transplant patient chronically infected with norovirus, as well as the parental GII.4-2006b strain. We demonstrate that intrahost GII.4 evolution results in the emergence of antigenically distinct strains over time, comparable to the variation noted between the chronologically predominant GII.4 strains GII.4-2006b and GII.4-2009. Our data suggest that in some individuals the evolution that occurs during a chronic norovirus infection overlaps with changing antigenic epitopes that are associated with successive outbreak strains and may select for isolates that are potentially able to escape herd immunity from earlier isolates. IMPORTANCE: Noroviruses are agents of gastrointestinal illness, infecting an estimated 21 million people per year in the United States alone. In healthy individuals, symptomatic infection typically resolves within 24 to 48 h. However, symptoms may persist for years in immunocompromised individuals, and development of successful treatments for these patients is a continuing challenge. This work is relevant to the design of successful norovirus therapeutics for chronically infected patients; provides support for previous assertions that chronically infected individuals may serve as reservoirs for new, antigenically unique emergent strains; and furthers our understanding of genogroup II, genotype 4 (GII.4) norovirus immune-driven molecular evolution.


Asunto(s)
Variación Antigénica/inmunología , Evolución Biológica , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/inmunología , Gastroenteritis/virología , Huésped Inmunocomprometido/inmunología , Norovirus/inmunología , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Brotes de Enfermedades/prevención & control , Epítopos/inmunología , Gastroenteritis/inmunología , Gastroenteritis/prevención & control , Humanos , Datos de Secuencia Molecular , Norovirus/aislamiento & purificación , Homología de Secuencia de Aminoácido , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA