Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(6): 781-793, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34031617

RESUMEN

Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.


Asunto(s)
Memoria Inmunológica , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Perú , RNA-Seq , Factores Sexuales , Análisis de la Célula Individual , Factores Socioeconómicos , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Adulto Joven
2.
PLoS Pathog ; 20(7): e1012339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950078

RESUMEN

The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.


Asunto(s)
COVID-19 , Memoria Inmunológica , Interleucina-10 , Macaca mulatta , Células T de Memoria , SARS-CoV-2 , Animales , Interleucina-10/inmunología , Interleucina-10/metabolismo , COVID-19/inmunología , SARS-CoV-2/inmunología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Memoria Inmunológica/inmunología , Pulmón/inmunología , Pulmón/virología , Pulmón/patología , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Interferón gamma/inmunología , Linfocitos T/inmunología
3.
Immunol Rev ; 301(1): 10-29, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33751597

RESUMEN

Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non-pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb-specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antígenos Bacterianos , Linfocitos T CD4-Positivos , Humanos , Inmunidad , Subgrupos de Linfocitos T
4.
Circ Res ; 131(3): 258-276, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35766025

RESUMEN

BACKGROUND: CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS: We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS: Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS: Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.


Asunto(s)
Enfermedad de la Arteria Coronaria , Animales , Apolipoproteínas B/metabolismo , Linfocitos T CD4-Positivos , Enfermedad de la Arteria Coronaria/metabolismo , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Humanos , Interferón gamma/metabolismo , Complejo Mayor de Histocompatibilidad , Ratones , Péptidos/genética
5.
J Immunol ; 206(6): 1181-1193, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33547171

RESUMEN

CCR6+CXCR3+CCR4-CD4+ memory T cells, termed Th1*, are important for long-term immunity to Mycobacterium tuberculosis and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4+ T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset. The genetic screen yielded candidates whose depletion significantly impaired TCR-induced IFN-γ production. These included genes previously linked to IFN-γ or M. tuberculosis susceptibility and novel candidates, such as ISOC1, encoding a metabolic enzyme of unknown function in mammalian cells. ISOC1-depleted T cells, which produced less IFN-γ and IL-17, displayed defects in oxidative phosphorylation and glycolysis and impairment of pyrimidine metabolic pathway. Supplementation with extracellular pyrimidines rescued both bioenergetics and IFN-γ production in ISOC1-deficient T cells, indicating that pyrimidine metabolism is a key driver of effector functions in CD4+ T cells and Th1* cells. Results provide new insights into the immune-stimulatory function of ISOC1 as well as the particular metabolic requirements of human memory T cells, providing a novel resource for understanding long-term T cell-driven responses.


Asunto(s)
Hidrolasas/metabolismo , Interferón gamma/genética , Interleucina-17/genética , Células TH1/inmunología , Regulación de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Células HEK293 , Voluntarios Sanos , Humanos , Hidrolasas/genética , Memoria Inmunológica/genética , Cultivo Primario de Células , Pirimidinas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Células TH1/metabolismo
6.
J Immunol ; 207(2): 523-533, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193602

RESUMEN

Upon Ag encounter, T cells can rapidly divide and form an effector population, which plays an important role in fighting acute infections. In humans, little is known about the molecular markers that distinguish such effector cells from other T cell populations. To address this, we investigated the molecular profile of T cells present in individuals with active tuberculosis (ATB), where we expect Ag encounter and expansion of effector cells to occur at higher frequency in contrast to Mycobacterium tuberculosis-sensitized healthy IGRA+ individuals. We found that the frequency of HLA-DR+ cells was increased in circulating CD4 T cells of ATB patients, and was dominantly expressed in M. tuberculosis Ag-specific CD4 T cells. We tested and confirmed that HLA-DR is a marker of recently divided CD4 T cells upon M. tuberculosis Ag exposure using an in vitro model examining the response of resting memory T cells from healthy IGRA+ to Ags. Thus, HLA-DR marks a CD4 T cell population that can be directly detected ex vivo in human peripheral blood, whose frequency is increased during ATB disease and contains recently divided Ag-specific effector T cells. These findings will facilitate the monitoring and study of disease-specific effector T cell responses in the context of ATB and other infections.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Linfocitos T CD4-Positivos/inmunología , Antígenos HLA-DR , Humanos
7.
Nature ; 546(7660): 656-661, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28636593

RESUMEN

Genetic studies have shown the association of Parkinson's disease with alleles of the major histocompatibility complex. Here we show that a defined set of peptides that are derived from α-synuclein, a protein aggregated in Parkinson's disease, act as antigenic epitopes displayed by these alleles and drive helper and cytotoxic T cell responses in patients with Parkinson's disease. These responses may explain the association of Parkinson's disease with specific major histocompatibility complex alleles.


Asunto(s)
Enfermedad de Parkinson/inmunología , Linfocitos T/inmunología , alfa-Sinucleína/inmunología , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Aminoácidos , Autoinmunidad , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Linfocitos T/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología , alfa-Sinucleína/química
8.
J Virol ; 95(21): e0094021, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379494

RESUMEN

Despite the prevalence and medical significance of human cytomegalovirus (HCMV) infections, a systematic analysis of the targets of T cell recognition in humans that spans the entire genome and includes recently described potential novel open reading frames (ORFs) is not available. Here, we screened a library of epitopes predicted to bind HLA class II that spans over 350 different HCMV ORFs and includes ∼150 previously described and ∼200 recently described potential novel ORFs by using an ex vivo gamma interferon (IFN-γ) FluoroSpot assay. We identified 235 unique HCMV-specific epitopes derived from 100 ORFs, some previously described as immunodominant and others that were not previously described to be immunogenic. Of those, 41 belong to the set of recently reported novel ORFs, thus providing evidence that at least some of these are actually expressed in vivo in humans. These data reveal that the breadth of the human T cell response to HCMV is much greater than previously thought. The ORFs and epitopes identified will help elucidate how T cell immunity relates to HCMV pathogenesis and instruct ongoing HCMV vaccine research. IMPORTANCE To understand the crucial role of adaptive immunity in controlling cytomegalovirus infection and disease, we systematically analyzed the CMV "ORFeome" to identify new CMV epitopes targeted primarily by CD4 T cells in humans. Our study identified >200 new T cell epitopes derived from both canonical and novel ORFs, highlighting the substantial breadth of the anti-CMV T cell response and providing new targets for vaccine design.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Epítopos de Linfocito T/inmunología , Sistemas de Lectura Abierta/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Citomegalovirus/virología , Epítopos de Linfocito T/genética , Femenino , Humanos , Interferón gamma , Masculino , Persona de Mediana Edad
9.
J Immunol ; 204(9): 2349-2359, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32229538

RESUMEN

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing ß cells within the pancreas are destroyed. Identification of target Ags and epitopes of the ß cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA-DQ/inmunología , Proinsulina/inmunología , Adolescente , Secuencia de Aminoácidos , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Niño , Preescolar , Humanos , Lactante , Insulina/inmunología , Células Secretoras de Insulina/inmunología , Bazo/inmunología
10.
PLoS Pathog ; 15(9): e1008011, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31498845

RESUMEN

Identification and characterization of CD8+ and CD4+ T-cell epitopes elicited by HIV therapeutic vaccination is key for elucidating the nature of protective cellular responses and mechanism of the immune evasion of HIV. Here, we report the characterization of HIV-specific T-cell responses in cART (combination antiretroviral therapy) treated HIV-1 infected patients after vaccination with ex vivo-generated IFNα Dendritic Cells (DCs) loaded with LIPO-5 (HIV-1 Nef 66-97, Nef 116-145, Gag 17-35, Gag 253-284 and Pol 325-355 lipopeptides). Vaccination induced and/or expanded HIV-specific CD8+ T cells producing IFNγ, perforin, granzyme A and granzyme B, and also CD4+ T cells secreting IFNγ, IL-2 and IL-13. These responses were directed against dominant and subdominant epitopes representing all vaccine regions; Gag, Pol and Nef. Interestingly, IL-2 and IL-13 produced by CD4+ T cells were negatively correlated with the peak of viral replication following analytic treatment interruption (ATI). Epitope mapping confirmed that vaccination elicited responses against predicted T-cell epitopes, but also allowed to identify a set of 8 new HIV-1 HLA-DR-restricted CD4+ T-cell epitopes. These results may help to better design future DC therapeutic vaccines and underscore the role of vaccine-elicited CD4+ T-cell responses to achieve control of HIV replication.


Asunto(s)
Vacunas contra el SIDA/inmunología , Epítopos de Linfocito T/inmunología , Vacunas contra el SIDA/metabolismo , Adulto , Antirretrovirales , Antivirales/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Quimioterapia Combinada/métodos , Epítopos/inmunología , Femenino , Infecciones por VIH/inmunología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Masculino , Persona de Mediana Edad , Vacunación
11.
Mov Disord ; 36(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009855

RESUMEN

Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación , Modelos Teóricos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , alfa-Sinucleína
12.
J Immunol ; 203(1): 84-92, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085590

RESUMEN

Tau protein is found to be aggregated and hyperphosphorylated (p-tau) in many neurologic disorders, including Parkinson disease (PD) and related parkinsonisms, Alzheimer disease, traumatic brain injury, and even in normal aging. Although not known to produce autoimmune responses, we hypothesized that the appearance of aggregated tau and p-tau with disease could activate the immune system. We thus compared T cell responses to tau and p-tau-derived peptides between PD patients, age-matched healthy controls, and young healthy controls (<35 y old; who are less likely to have high levels of tau aggregates). All groups exhibited CD4+ T cell responses to tau-derived peptides, which were associated with secretion of IFN-γ, IL-5, and/or IL-4. The PD and control participants exhibited a similar magnitude and breadth of responses. Some tau-derived epitopes, consisting of both unmodified and p-tau residues, were more highly represented in PD participants. These results were verified in an independent set of PD and control donors (either age-matched or young controls). Thus, T cells recognizing tau epitopes escape central and peripheral tolerance in relatively high numbers, and the magnitude and nature of these responses are not modulated by age or PD disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Péptidos/inmunología , Proteínas tau/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Autoinmunidad , Células Cultivadas , Selección Clonal Mediada por Antígenos , Femenino , Humanos , Tolerancia Inmunológica , Masculino , Persona de Mediana Edad , Fosforilación , Agregación Patológica de Proteínas , Especificidad del Receptor de Antígeno de Linfocitos T , Adulto Joven
13.
J Infect Dis ; 222(1): 44-53, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-31605528

RESUMEN

BCG vaccination has been demonstrated to increase levels of activated CD4+ T cells, thus potentially influencing mother-to-child transmission of human immunodeficiency virus (HIV). To assess the risk of BCG vaccination in HIV infection, we randomly assigned newborn rhesus macaques to receive BCG vaccine or remain unvaccinated and then undergo oral simian immunodeficiency virus (SIV) challenges 3 weeks later. We observed elevated levels of activated peripheral CD4+ T cells (ie, HLA-DR+CD38+CCR5+ CD4+ T cells) by week 3 after vaccination. BCG was also associated with an altered immune gene expression profile, as well as with monocyte activation in both peripheral blood and the draining axillary lymph node, indicating significant BCG vaccine-induced immune activation. Despite these effects, BCG vaccination did not increase the rate of SIV oral transmission or disease progression. Our findings therefore identify patterns of T-cell and monocyte activation that occur after BCG vaccination but do not support the hypothesis that BCG vaccination is a risk factor for postnatal HIV transmission or increased pathogenesis in infants.


Asunto(s)
Inmunidad Activa/efectos de los fármacos , Macaca mulatta/inmunología , Retrovirus de los Simios/efectos de los fármacos , Retrovirus de los Simios/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Femenino , Masculino , Modelos Animales , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Vacunación/métodos
14.
Cytometry A ; 97(11): 1127-1135, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32400942

RESUMEN

Our recent work has highlighted that care needs to be taken when interpreting single cell data originating from flow cytometry acquisition or cell sorting: We found that doublets of T cells bound to other immune cells are often present in the live singlet gate of human peripheral blood samples acquired by flow cytometry. This hidden "contamination" generates atypical gene signatures of mixed cell lineage in what is assumed to be single cells, which can lead to data misinterpretation, such as the description of novel immune cell types. Here, based on the example of T cell-monocyte complexes, we identify experimental and data analysis strategies to help distinguishing between singlets and cell-cell complexes in non-imaging flow cytometry and single-cell sorting. We found robust molecular signatures in both T cell-monocyte and T cell-B cell complexes that can distinguish them from singlets at both protein and mRNA levels. Imaging flow cytometry with appropriate gating strategy (matching the one used in cell sorting) and direct microscopy imaging after cell sorting were the two methods of choice to detect the presence of cell-cell complexes in suspicious dual-expressing cells. We finally applied this knowledge to highlight the likely presence of T cell-B cell complexes in a recently published dataset describing a novel cell population with mixed T cell and B cell lineage properties. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Monocitos , Linfocitos T , Linaje de la Célula , Separación Celular , Citometría de Flujo , Humanos
15.
J Immunol ; 200(9): 3283-3290, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602771

RESUMEN

In the context of infectious diseases, cell population transcriptomics are useful to gain mechanistic insight into protective immune responses, which is not possible using traditional whole-blood approaches. In this study, we applied a cell population transcriptomics strategy to sorted memory CD4 T cells to define novel immune signatures of latent tuberculosis infection (LTBI) and gain insight into the phenotype of tuberculosis (TB)-specific CD4 T cells. We found a 74-gene signature that could discriminate between memory CD4 T cells from healthy latently Mycobacterium tuberculosis-infected subjects and noninfected controls. The gene signature presented a significant overlap with the gene signature of the Th1* (CCR6+CXCR3+CCR4-) subset of CD4 T cells, which contains the majority of TB-specific reactivity and is expanded in LTBI. In particular, three Th1* genes (ABCB1, c-KIT, and GPA33) were differentially expressed at the RNA and protein levels in memory CD4 T cells of LTBI subjects compared with controls. The 74-gene signature also highlighted novel phenotypic markers that further defined the CD4 T cell subset containing TB specificity. We found the majority of TB-specific epitope reactivity in the CD62L-GPA33- Th1* subset. Thus, by combining cell population transcriptomics and single-cell protein-profiling techniques, we identified a CD4 T cell immune signature of LTBI that provided novel insights into the phenotype of TB-specific CD4 T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Tuberculosis Latente/genética , Tuberculosis Latente/inmunología , Adulto , Perfilación de la Expresión Génica , Humanos , Masculino , Transcriptoma
16.
J Immunol ; 200(8): 3008-3019, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540577

RESUMEN

Antigen-specific CD4 and CD8 T cells are important components of the immune response to Mycobacterium tuberculosis, yet little information is currently known regarding how the breadth, specificity, phenotype, and function of M. tuberculosis-specific T cells correlate with M. tuberculosis infection outcome in humans. To facilitate evaluation of human M. tuberculosis-specific T cell responses targeting multiple different Ags, we sought to develop a high throughput and reproducible T cell response spectrum assay requiring low blood sample volumes. We describe here the optimization and standardization of a microtiter plate-based, diluted whole blood stimulation assay utilizing overlapping peptide pools corresponding to a functionally diverse panel of 60 M. tuberculosis Ags. Using IFN-γ production as a readout of Ag specificity, the assay can be conducted using 50 µl of blood per test condition and can be expanded to accommodate additional Ags. We evaluated the intra- and interassay variability, and implemented testing of the assay in diverse cohorts of M. tuberculosis-unexposed healthy adults, foreign-born adults with latent M. tuberculosis infection residing in the United States, and tuberculosis household contacts with latent M. tuberculosis infection in a tuberculosis-endemic setting in Kenya. The M. tuberculosis-specific T cell response spectrum assay further enhances the immunological toolkit available for evaluating M. tuberculosis-specific T cell responses across different states of M. tuberculosis infection, and can be readily implemented in resource-limited settings. Moreover, application of the assay to longitudinal cohorts will facilitate evaluation of treatment- or vaccine-induced changes in the breadth and specificity of Ag-specific T cell responses, as well as identification of M. tuberculosis-specific T cell responses associated with M. tuberculosis infection outcomes.


Asunto(s)
Pruebas Hematológicas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Linfocitos T/inmunología , Tuberculosis/sangre , Tuberculosis/inmunología , Estudios Transversales , Humanos , Técnicas Inmunológicas/métodos , Estudios Longitudinales , Reproducibilidad de los Resultados
17.
J Infect Dis ; 220(7): 1091-1098, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31165861

RESUMEN

Development of an improved tuberculosis (TB) vaccine is a high worldwide public health priority. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, provides variable efficacy against adult pulmonary TB, but why this protection varies is unclear. Humans are regularly exposed to non-tuberculous mycobacteria (NTM) that live in soil and water reservoirs and vary in different geographic regions around the world. Immunologic cross-reactivity may explain disparate outcomes of BCG vaccination and susceptibility to TB disease. Evidence supporting this hypothesis is increasing but challenging to obtain due to a lack of reliable research tools. In this review, we describe the progress and bottlenecks in research on NTM epidemiology, immunology and heterologous immunity to Mtb. With ongoing efforts to develop new vaccines for TB, understanding the effect of NTM on vaccine efficacy may be a critical determinant of success.


Asunto(s)
Inmunidad Heteróloga , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Micobacterias no Tuberculosas/inmunología , Tuberculosis Pulmonar/inmunología , Adulto , Animales , Vacuna BCG/inmunología , Humanos , Inmunidad Celular , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Mycobacterium tuberculosis/inmunología , Vacunación
18.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29891545

RESUMEN

Mycobacterium tuberculosis remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by M. tuberculosis We previously reported that the mycobacterial ribosome is a major target of CD4+ T cells in mice immunized with a genetically modified Mycobacterium smegmatis strain (IKEPLUS) but not in mice immunized with Mycobacterium bovis BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of M. tuberculosis, but the breadth of the CD4+ T cell response to M. tuberculosis ribosomes was not determined. In the present study, a library of M. tuberculosis ribosomal proteins and in silico-predicted peptide libraries were used to screen CD4+ T cell responses in IKEPLUS-immunized mice. This identified 24 out of 57 M. tuberculosis ribosomal proteins distributed over both large and small ribosome subunits as specific CD4+ T cell targets. Although BCG did not induce detectable responses against ribosomal proteins or peptide epitopes, the M. tuberculosis ribosomal protein RplJ produced a robust and multifunctional Th1-like CD4+ T cell population when administered as a booster vaccine to previously BCG-primed mice. Boosting of BCG-primed immunity with the M. tuberculosis RplJ protein led to significantly reduced lung pathology compared to that in BCG-immunized animals and reductions in the bacterial burdens in the mediastinal lymph node compared to those in naive and standard BCG-vaccinated mice. These results identify the mycobacterial ribosome as a potential source of cryptic or subdominant antigenic targets of protective CD4+ T cell responses and suggest that supplementing BCG with ribosomal antigens may enhance protective vaccination against M. tuberculosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/química , Proteínas Ribosómicas/inmunología , Tuberculosis/inmunología , Animales , Vacuna BCG/inmunología , Femenino , Inmunización Secundaria , Interferón gamma/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/inmunología , Biblioteca de Péptidos , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis/inmunología
19.
Eur Respir J ; 52(5)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30361242

RESUMEN

Antibiotic treatment of tuberculosis takes ≥6 months, putting a major burden on patients and health systems in large parts of the world. Treatment beyond 2 months is needed to prevent tuberculosis relapse by clearing remaining, drug-tolerant Mycobacterium tuberculosis bacilli. However, the majority of patients treated for only 2-3 months will cure without relapse and do not need prolonged treatment. Assays that can identify these patients at an early stage of treatment may significantly help reduce the treatment burden, while a test to identify those patients who will fail treatment may help target host-directed therapies.In this review we summarise the state of the art with regard to discovery of biomarkers that predict relapse-free cure for pulmonary tuberculosis. Positron emission tomography/computed tomography scanning to measure pulmonary inflammation enhances our understanding of "cure". Several microbiological and immunological markers seem promising; however, they still need a formal validation. In parallel, new research strategies are needed to generate reliable tests.


Asunto(s)
Biomarcadores/análisis , Pulmón/diagnóstico por imagen , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Pulmonar/diagnóstico por imagen , Antituberculosos/uso terapéutico , Humanos , Pulmón/microbiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Recurrencia , Tuberculosis Pulmonar/tratamiento farmacológico
20.
PLoS Pathog ; 12(7): e1005760, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27409590

RESUMEN

We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb), in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total). The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.


Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Tuberculosis/inmunología , Adulto , Ensayo de Immunospot Ligado a Enzimas , Femenino , Técnica del Anticuerpo Fluorescente , Antígenos HLA , Humanos , Masculino , Mycobacterium tuberculosis/inmunología , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA