Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 225-244, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301741

RESUMEN

Autophagy is the process of cellular self-eating by a double-membrane organelle, the autophagosome. A range of signaling processes converge on two protein complexes to initiate autophagy: the ULK1 (unc51-like autophagy activating kinase 1) protein kinase complex and the PI3KC3-C1 (class III phosphatidylinositol 3-kinase complex I) lipid kinase complex. Some 90% of the mass of these large protein complexes consists of noncatalytic domains and subunits, and the ULK1 complex has essential noncatalytic activities. Structural studies of these complexes have shed increasing light on the regulation of their catalytic and noncatalytic activities in autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the integral membrane protein Atg9 (autophagy-related 9), COPII (coat protein complex II) vesicles, and possibly other sources. In the wake of reconstitution and super-resolution imaging studies, we are beginning to understand how the ULK1 and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII vesicles at the start of autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Fagosomas/ultraestructura , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Unión Proteica , Multimerización de Proteína , Transducción de Señal
2.
Nature ; 618(7963): 151-158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198494

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Asunto(s)
Glucosa , Neoplasias Pancreáticas , Ribosa , Microambiente Tumoral , Uridina , Animales , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ribosa/metabolismo , Uridina/química , Glucosa/deficiencia , División Celular , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Uridina Fosforilasa/deficiencia , Uridina Fosforilasa/genética , Uridina Fosforilasa/metabolismo , Humanos
3.
Mol Cell ; 73(2): 339-353.e6, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581147

RESUMEN

Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first ß sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA ß sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 ß sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1/química , Beclina-1/genética , Sitios de Unión , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Microscopía por Crioelectrón , Activación Enzimática , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación de Dinámica Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(3): e2213622120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626551

RESUMEN

Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.


Asunto(s)
Placenta , Placentación , Proteínas Represoras , Transactivadores , Animales , Femenino , Humanos , Embarazo , Ratas , Placentación/genética , Proteínas Represoras/genética , Transactivadores/genética , Trofoblastos , Útero
5.
Genes Dev ; 32(13-14): 978-990, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29967292

RESUMEN

The largest subunit of the origin recognition complex (ORC1) is essential for assembly of the prereplicative complex, firing of DNA replication origins, and faithful duplication of the genome. Here, we generated knock-in mice with LoxP sites flanking exons encoding the critical ATPase domain of ORC1. Global or tissue-specific ablation of ORC1 function in mouse embryo fibroblasts and fetal and adult diploid tissues blocked DNA replication, cell lineage expansion, and organ development. Remarkably, ORC1 ablation in extraembryonic trophoblasts and hepatocytes, two polyploid cell types in mice, failed to impede genome endoreduplication and organ development and function. Thus, ORC1 in mice is essential for mitotic cell divisions but dispensable for endoreduplication. We propose that DNA replication of mammalian polyploid genomes uses a distinct ORC1-independent mechanism.


Asunto(s)
Endorreduplicación/genética , Genoma/genética , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Adenosina Trifosfatasas/genética , Animales , División Celular/genética , Proliferación Celular/genética , Desarrollo Embrionario/genética , Activación Enzimática , Femenino , Eliminación de Gen , Hepatocitos/citología , Regeneración Hepática/genética , Ratones , Mitosis/genética , Placenta/fisiología , Embarazo
6.
J Infect Dis ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349364

RESUMEN

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.

7.
J Infect Dis ; 230(1): e149-e158, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052707

RESUMEN

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.


Asunto(s)
Antibacterianos , Escherichia coli , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Esteroides/farmacología , Esteroides/química , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Grupo Citocromo b , Citocromos/antagonistas & inhibidores , Citocromos/metabolismo
8.
J Proteome Res ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367000

RESUMEN

Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often toward drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. In silico predictions throughout plants were utilized to illustrate that CC-AMP1-like and CC-AMP2-like peptides belong to two broader AMP families, with three-dimensional structural predictions indicating that CC-AMP1-like peptides comprise a novel subfamily of α-hairpinins. The antibacterial activities of several closely related CC-AMP1-like peptides were compared with a truncated version of CC-AMP1 possessing significantly more activity than the full peptide. This truncated peptide was further characterized to possess broad-spectrum antibacterial activity against clinically relevant ESKAPE pathogens. These findings illustrate the value in continued study of plant AMPs toward characterization of novel AMP families, with CC-AMP1-like peptides possessing promising bioactivity.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38759826

RESUMEN

BACKGROUND & AIMS: Glucagon-like peptide-1-receptor agonists (GLP1-RAs) have been associated with greater retention of gastric contents, however, there is minimal controlled, population-based data evaluating the potential adverse effects of GLP1-RA in the periprocedural setting. We aimed to determine if there is increased risk of aspiration and aspiration-related complications after upper endoscopy in patients using GLP1-RAs. METHODS: We used a nationwide commercial administrative claims database to conduct a retrospective cohort study of patients aged 18 to 64 with type 2 diabetes who underwent outpatient upper endoscopy from 2005 to 2021. We identified 6,806,046 unique upper endoscopy procedures. We compared claims for aspiration and associated pulmonary adverse events in the 14 days after upper endoscopy between users of GLP1-RAs, dipeptidyl peptidase 4 inhibitors (DPP4is), and chronic opioids. We adjusted for age, sex, Charlson Comorbidity score, underlying respiratory disease, and gastroparesis. RESULTS: We found that pulmonary adverse events after upper endoscopy are rare, ranging from 6 to 25 events per 10,000 procedures. When comparing GLP1-RAs with DPP4i, crude relative risks of aspiration (0.67; 95% CI, 0.25-1.75), aspiration pneumonia (0.95; 95% CI, 0.40-2.29), pneumonia (1.07; 95% CI, 0.62-1.86), or respiratory failure (0.75; 95% CI, 0.38-1.48) were not higher in patients prescribed a GLP1-RA. When comparing GLP1-RAs with opioids, crude relative risks were 0.42 (95% CI, 0.15-1.16) for aspiration, 0.60 (95% CI, 0.24-1.52) for aspiration pneumonia, 0.30 (95% CI, 0.19-0.49) for pneumonia, and 0.24 (95% CI, 0.13-0.45) for respiratory failure. These results were consistent across several sensitivity analyses. CONCLUSIONS: GLP1-RA use is not associated with an increased risk of pulmonary complications after upper endoscopy compared with DPP4i use in patients with type 2 diabetes.

10.
Biol Reprod ; 110(4): 798-807, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38134962

RESUMEN

The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.


Asunto(s)
Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Contracción Uterina , Animales , Femenino , Ratones , Embarazo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo , Contracción Uterina/efectos de los fármacos , Contracción Uterina/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo
11.
J Gen Intern Med ; 39(1): 52-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37558857

RESUMEN

BACKGROUND: Food insecurity (FI) often co-exists with other social risk factors, which makes addressing it particularly challenging. The degree of association between FI and other social risk factors across different levels of income and before and during the COVID-19 pandemic is currently unknown, impeding the ability to design effective interventions for addressing these co-existing social risk factors. OBJECTIVE: To determine the association between FI and other social risk factors overall and across different levels of income-poverty ratios and before (2019) and during (2020-2021) the pandemic. DESIGN: We used nationally representative data from the 2019-2021 National Health Interview Survey for our cross-sectional analysis. Social risk factors available in NHIS included difficulties paying for medical bills, difficulties paying for medications, receiving income assistance, receiving rental assistance, and "not working last week". SUBJECTS: 93,047 adults (≥18 years old). KEY RESULTS: Individuals with other social risk factors (except receiving income assistance) were more likely to report FI, even after adjusting for income and education inequalities. While poverty leads to a higher prevalence of FI, associations between FI and other social risk factors were stronger among people with higher incomes, which may be related to their ineligibility for social safety net programs. Associations were similar before and during the pandemic, perhaps due to the extensive provision of social safety net programs during the pandemic. CONCLUSIONS: Future research should explore how access to a variety of social safety net programs may impact the association between social risk factors. With the expiration of most pandemic-related social supports, further research and monitoring are also needed to examine FI in the context of increasing food and housing costs. Our findings may also have implications for the expansion of income-based program eligibility criteria and screening for social risk factors across all patients and not only low-income people.


Asunto(s)
Abastecimiento de Alimentos , Pandemias , Adulto , Humanos , Adolescente , Estudios Transversales , Inseguridad Alimentaria , Factores de Riesgo
12.
Brain Behav Immun ; 118: 221-235, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458498

RESUMEN

The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.


Asunto(s)
Complemento C3 , Inflamación , Animales , Ratones , Complemento C3/genética , Electrodos Implantados , Microelectrodos
13.
Stat Med ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030763

RESUMEN

Ecological momentary assessment (EMA), a data collection method commonly employed in mHealth studies, allows for repeated real-time sampling of individuals' psychological, behavioral, and contextual states. Due to the frequent measurements, data collected using EMA are useful for understanding both the temporal dynamics in individuals' states and how these states relate to adverse health events. Motivated by data from a smoking cessation study, we propose a joint model for analyzing longitudinal EMA data to determine whether certain latent psychological states are associated with repeated cigarette use. Our method consists of a longitudinal submodel-a dynamic factor model-that models changes in the time-varying latent states and a cumulative risk submodel-a Poisson regression model-that connects the latent states with the total number of events. In the motivating data, both the predictors-the underlying psychological states-and the event outcome-the number of cigarettes smoked-are partially unobservable; we account for this incomplete information in our proposed model and estimation method. We take a two-stage approach to estimation that leverages existing software and uses importance sampling-based weights to reduce potential bias. We demonstrate that these weights are effective at reducing bias in the cumulative risk submodel parameters via simulation. We apply our method to a subset of data from a smoking cessation study to assess the association between psychological state and cigarette smoking. The analysis shows that above-average intensities of negative mood are associated with increased cigarette use.

14.
Ann Behav Med ; 58(7): 506-516, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38740389

RESUMEN

BACKGROUND: Affect states are posited to play a pivotal role in addiction-related processes, including tobacco lapse (i.e., smoking during a quit attempt), and distinct affective states (e.g., joy vs. happiness) may differentially influence lapse likelihood. However, few studies have examined the influence of distinct affective states on tobacco lapse. PURPOSE: This study examines the influence of 23 distinct affect states on tobacco lapse among a sample of tobacco users attempting to quit. METHODS: Participants were 220 adults who identified as African American (50% female, ages 18-74). Ecological momentary assessment was used to assess affect and lapse in real-time. Between and within-person associations testing links between distinct affect states and lapse were examined with multilevel modeling for binary outcomes. RESULTS: After adjusting for previous time's lapse and for all other positive or negative affect items, results suggested that at the between-person level, joy was associated with lower odds of lapse, and at the within-person level, attentiveness was associated with lower odds of lapse. Results also suggested that at the between-person level, guilt and nervous were associated with higher odds of lapse, and at the within-person level, shame was associated with higher odds of lapse. CONCLUSIONS: The present study uses real-time, real-world data to demonstrate the role of distinct positive and negative affects on momentary tobacco lapse. This work helps elucidate specific affective experiences that facilitate or hinder the ability to abstain from tobacco use during a quit attempt.


Asunto(s)
Afecto , Negro o Afroamericano , Evaluación Ecológica Momentánea , Cese del Hábito de Fumar , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Negro o Afroamericano/psicología , Cese del Hábito de Fumar/psicología , Cese del Hábito de Fumar/etnología , Adulto Joven , Adolescente , Anciano , Afecto/fisiología , Estudios de Cohortes , Felicidad
15.
J Surg Res ; 295: 148-157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016268

RESUMEN

INTRODUCTION: The U.S. Military uses handwritten documentation throughout the continuum of combat casualty care to document from point-of-injury, during transport and at facilities that provide damage control resuscitation and surgery. Proven impractical due to lack of durability and legibility in arduous tactical environments, we hypothesized that mobile applications would increase accuracy and completeness of documentation in combat casualty simulations. METHODS: We conducted simulations across this continuum utilizing 10 two-person teams consisting of a Medic and an Emergency or Critical Care Nurse. Participants were randomized to either the paper group or BATDOK and T6 Health Systems mobile application group. Simulations were completed in both the classroom and simulated field environments. All documentation was assessed for speed, completeness, and accuracy. RESULTS: Participant demographics averaged 10.8 ± 5.2 y of military service and 3.9 ± 0.6 h of training on both platforms. Classroom testing showed a significant increase in completeness (84.2 ± 8.1% versus 77.2 ± 6.9%; P = 0.02) and accuracy (77.6 ± 8.1% versus 68.9 ± 7.5%; P = 0.01) for mobile applications versus paper with no significant difference in overall time to completion (P = 0.19). Field testing again showed a significant increase in completeness (91.6 ± 5.8 % versus 70.0 ± 14.1%; P < 0.01) and accuracy (87.7 ± 7.6% versus 64.1 ± 14.4%; P < 0.01) with no significant difference in overall time to completion (P = 0.44). CONCLUSIONS: In deployed environments, mobile applications have the potential to improve casualty care documentation completeness and accuracy with minimal additional training. These efforts will assist in meeting an urgent operational need to enable our providers.


Asunto(s)
Servicios Médicos de Urgencia , Medicina Militar , Personal Militar , Aplicaciones Móviles , Humanos , Resucitación
16.
Inorg Chem ; 63(6): 2888-2898, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38295440

RESUMEN

Late-transition-metal catalysts for polymerization of olefins have drawn a significant amount of attention owing to their ability to tolerate and incorporate polar comonomers. However, a systematic way to experimentally quantify the electronic properties of the ligands used in these systems has not been developed. Quantified ligand parameters will allow for the rational design of tailored polymerization catalysts, which would target specific polymer properties. We report a series of platinum complexes bearing bisphosphinemonoxide ligands, which resemble those used in the polymerization catalysts of Nozaki and Chen. Their electronic properties are investigated experimentally, and trends are rationalized by using computed spectral properties. Benchmarking computational data with known experimental parameters further enhances the utility of both methods for determining optimal ligands for catalytic application.

17.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126797

RESUMEN

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.


Asunto(s)
Empalme Alternativo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de la Membrana , Ribonucleoproteínas , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Empalme del ARN , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
18.
Mol Cell Proteomics ; 21(5): 100225, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331917

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation, hepatocyte injury, and fibrosis. Further, NASH is a risk factor for cirrhosis and hepatocellular carcinoma. Previous research demonstrated that serum N-glycan profiles can be altered in NASH patients. Here, we hypothesized that these N-glycan modifications may be associated with specific liver damage in NAFLD and NASH. To investigate the N-glycome profile in tissue, imaging mass spectrometry was used for a qualitative and quantitative in situ N-linked glycan analysis of mouse and human NAFLD/NASH tissue. A murine model was used to induce NAFLD and NASH through ad libitum feeding with either a high-fat diet or a Western diet, respectively. Mice fed a high-fat diet or Western diet developed inflammation, steatosis, and fibrosis, consistent with NAFLD/NASH phenotypes. Induction of NAFLD/NASH for 18 months using high caloric diets resulted in increased expression of mannose, complex/fucosylated, and hybrid N-glycan structures compared to control mouse livers. To validate the animal results, liver biopsy specimens from 51 human NAFLD/NASH patients representing the full range of NASH Clinical Research Network fibrosis stages were analyzed. Importantly, the same glycan alterations observed in mouse models were observed in human NASH biopsies and correlated with the degree of fibrosis. In addition, spatial glycan alterations were localized specifically to histopathological changes in tissue like fibrotic and fatty areas. We demonstrate that the use of standard staining's combined with imaging mass spectrometry provide a full profile of the origin of N-glycan modifications within the tissue. These results indicate that the spatial distribution of abundances of released N-glycans correlate with regions of tissue steatosis associated with NAFLD/NASH.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Occidental , Modelos Animales de Enfermedad , Glicosilación , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Espectrometría de Masas , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo
19.
J Arthroplasty ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38336306

RESUMEN

BACKGROUND: A number of tools exist to aid surgeons in risk assessment, including the Charlson Comorbidity Index (CCI), the Elixhauser Comorbidity Index (ECI), and various measures of frailty, such as the Hospital Frailty Risk Score (HFR). While all of these tools have been validated for general use, the best risk assessment tool is still debated. Risk assessment is particularly important in elective surgery, such as total joint arthroplasty. The aim of this study is to compare the predictive power of the CCI, ECI, and HFR in the setting of total knee arthroplasty (TKA). METHODS: All patients who underwent TKA were identified via International Statistical Classification of Diseases and Related Health Problems, Tenth Revision code from the National Readmissions Database, years 2016 to 2019. Patient demographics, perioperative complications, and hospital-associated outcomes were recorded. Receiver operating characteristic (ROC) curves were created and area under the curves (AUCs) evaluated to gauge the predictive capabilities of each risk assessment tool (CCI, ECI, and HFR) across a range of outcomes. RESULTS: A total of 1,930,803 patients undergoing TKA were included in our analysis. For mortality, ECI was most predictive (0.95 AUC), while HFR and CCI were 0.75 and 0.74 AUC, respectively. For periprosthetic fractures, ECI was 0.78 AUC, HFR was 0.68 AUC, and CCI was 0.66 AUC. For joint infections, the ECI was 0.78 AUC, the HFR was 0.63 AUC, and the CCI was 0.62 AUC. For 30-day readmission, ECI was 0.79 AUC, while HFR and CCI were 0.6 AUC. For 30-day reoperation, ECI was 0.69 AUC, while HFR was 0.58 AUC and CCI was 0.56 AUC. CONCLUSIONS: Our analysis shows that ECI is superior to CCI and HFR for predicting 30-day postoperative outcomes following TKA. Surgeons should consider assessing patients using ECI prior to TKA.

20.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999982

RESUMEN

G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Ligandos , Sitios de Unión , Descubrimiento de Drogas/métodos , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA