Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Opt Express ; 29(9): 12958-12966, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985041

RESUMEN

We report on both experiments and theory of low-terahertz frequency range (up to 400 GHz) magnetoplasmons in a gated two-dimensional electron gas at low (<4K) temperatures. The evolution of magnetoplasmon resonances was observed as a function of magnetic field at frequencies up to ∼400 GHz. Full-wave 3D simulations of the system predicted the spatial distribution of plasmon modes in the 2D channel, along with their frequency response, allowing us to distinguish those resonances caused by bulk and edge magnetoplasmons in the experiments. Our methodology is anticipated to be applicable to the low temperature (<4K) on-chip terahertz measurements of a wide range of other low-dimensional mesoscopic systems.

2.
Opt Express ; 28(4): 4374-4386, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121675

RESUMEN

The quantum cascade laser is a powerful solid-state source of terahertz-frequency radiation. However, integrating multiple photonic functions into a monolithic platform in this frequency range is non-trivial due to the scaling of photonic structures for the long terahertz wavelengths and the low frequency tuning coefficients of the quantum cascade lasers. Here, we have designed a simple terahertz-frequency photonic integrated circuit by coupling a racetrack resonator with a ridge laser in the longitudinal direction to design a notch filter. The transmission properties of this filter structure are dependent on the phase matching and losses in the coupled racetrack and results in a comb of stopband frequencies. We have optimized the comb separation by carefully selecting the cavity dimensions of the racetrack resonator to suppress longitudinal modes in the ridge laser enabling single-mode emission. The emission frequencies and output power from laser are controlled through appropriate control of drive currents to the ridge and the racetrack resonator. The emission frequency is electrically tuned over ∼81 GHz exploiting Stark shift of the gain as a function of drive current at the ridge laser, coinciding with an output power variation of ∼27% of the peak power (at a heat sink temperature of 50 K). The output power from the ridge also varied by ∼30% and the frequency was tuned by a further 10 GHz when the driving conditions at the ridge laser are invariant and the current at the racetrack resonator was varied. To our best knowledge, this is the first report of a frequency engineering, tuning and power modulation of terahertz-frequency quantum cascade lasers using a photonic integrated circuit.

3.
Opt Express ; 27(23): 33768-33778, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878438

RESUMEN

We demonstrate an electrically tunable polarizer for terahertz (THz) frequency electromagnetic waves formed from a hybrid graphene-metal metasurface. Broadband (>3 THz) polarization-dependent modulation of THz transmission is demonstrated as a function of the graphene conductivity for various wire grid geometries, each tuned by gating using an overlaid ion gel. We show a strong enhancement of modulation (up to ∼17 times) compared to graphene wire grids in the frequency range of 0.2-2.5 THz upon introduction of the metallic elements. Theoretical calculations, considering both plasmonic coupling and Drude absorption, are in good agreement with our experimental findings.

4.
Opt Express ; 27(16): 23164-23172, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510599

RESUMEN

We demonstrate a significant enhancement in the sensitivity of split ring resonator terahertz metamaterial dielectric sensors by the introduction of etched trenches into their inductive-capacitive gap area, both through finite element simulations and in experiments performed using terahertz time-domain spectroscopy. The enhanced sensitivity is demonstrated by observation of an increased frequency shift in response to overlaid dielectric material of thicknesses up to 18 µm deposited on to the sensor surface. We show that sensitivity to the dielectric is enhanced by a factor of up to ∼2.7 times by the incorporation of locally etched trenches with a depth of ∼3.4 µm, for example, and discuss the effect of the etching on the electrical properties of the sensors. Our experimental findings are in good agreement with simulations of the sensors obtained using finite element methods.

5.
Opt Lett ; 44(13): 3314-3317, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259948

RESUMEN

We report on the high detection sensitivity of a laser feedback interferometry scheme based on a terahertz frequency quantum cascade laser (QCL). We show that variations on the laser voltage induced by optical feedback to the laser can be resolved with the reinjection of powers as low as ∼-125 dB of the emitted power. Our measurements demonstrate a noise equivalent power of ∼1.4 pW/√Hz, although, after accounting for the reinjection losses, we estimate that this corresponds to only ∼1 fW/√Hz being coupled to the QCL active region.

6.
Opt Express ; 26(4): 3814-3827, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475360

RESUMEN

Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 1015 cm-3, an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.

7.
Opt Lett ; 43(24): 5933-5936, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30547973

RESUMEN

A multimode self-mixing terahertz-frequency gas absorption spectroscopy is demonstrated based on a quantum cascade laser. A double-metal device configuration is used to expand the laser's frequency tuning range, and a precision-micromachined external waveguide module is used to enhance the optical feedback. Methanol spectra are measured using two laser modes at 3.362 and 3.428 THz, simultaneously, with more than eight absorption peaks resolved over a 17 GHz bandwidth, which provide the noise-equivalent absorption sensitivity of 1.20×10-3 cm-1 Hz-1/2 and 2.08×10-3 cm-1 Hz-1/2, respectively. In contrast to all previous self-mixing spectroscopy, our multimode technique expands the sensing bandwidth and duty cycle significantly.

8.
Opt Express ; 24(3): 2174-82, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906793

RESUMEN

The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out.

9.
Opt Express ; 24(25): 28583-28593, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958502

RESUMEN

We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.

10.
Opt Lett ; 41(2): 285-8, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26766695

RESUMEN

We report a wavelength threshold extension, from the designed value of 3.1 to 8.9 µm, in a p-type heterostructure photodetector. This is associated with the use of a graded barrier and barrier offset, and arises from hole-hole interactions in the detector absorber. Experiments show that using long-pass filters to tune the energies of incident photons gives rise to changes in the intensity of the response. This demonstrates an alternative approach to achieving tuning of the photodetector response without the need to adjust the characteristic energy that is determined by the band structure.

11.
Opt Express ; 23(3): 2720-9, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836134

RESUMEN

The technique of molecular beam epitaxy has recently been used to demonstrate the growth of terahertz frequency GaAs/AlGaAs quantum cascade lasers (QCL) with Watt-level optical output powers. In this paper, we discuss the critical importance of achieving accurate layer thicknesses and alloy compositions during growth, and demonstrate that precise growth control as well as run-to-run growth reproducibility is possible. We also discuss the importance of minimizing background doping level in maximizing QCL performance. By selecting high-performance active region designs, and optimizing the injection doping level and device fabrication, we demonstrate total optical (two-facet) output powers as high as 1.56 W.

12.
Opt Express ; 23(4): 4012-20, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836440

RESUMEN

Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.

13.
Opt Lett ; 40(6): 950-3, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25768154

RESUMEN

We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme, the frequency tuning rate of a THz QCL is characterized, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantization in previously implemented fringe-counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilization schemes for THz QCLs.

14.
Opt Lett ; 40(6): 994-7, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25768165

RESUMEN

We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach, we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 µm with a power noise spectral density below -50 dB/Hz, for a sampling time of 10 ms/pixel.

15.
Nature ; 457(7226): 174-8, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19129844

RESUMEN

Semiconductor lasers based on two-dimensional photonic crystals generally rely on an optically pumped central area, surrounded by un-pumped, and therefore absorbing, regions. This ideal configuration is lost when photonic-crystal lasers are electrically pumped, which is practically more attractive as an external laser source is not required. In this case, in order to avoid lateral spreading of the electrical current, the device active area must be physically defined by appropriate semiconductor processing. This creates an abrupt change in the complex dielectric constant at the device boundaries, especially in the case of lasers operating in the far-infrared, where the large emission wavelengths impose device thicknesses of several micrometres. Here we show that such abrupt boundary conditions can dramatically influence the operation of electrically pumped photonic-crystal lasers. By demonstrating a general technique to implement reflecting or absorbing boundaries, we produce evidence that whispering-gallery-like modes or true photonic-crystal states can be alternatively excited. We illustrate the power of this technique by fabricating photonic-crystal terahertz (THz) semiconductor lasers, where the photonic crystal is implemented via the sole patterning of the device top metallization. Single-mode laser action is obtained in the 2.55-2.88 THz range, and the emission far field exhibits a small angular divergence, thus providing a solution for the quasi-total lack of directionality typical of THz semiconductor lasers based on metal-metal waveguides.

16.
Opt Lett ; 39(13): 3962-5, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24978782

RESUMEN

Photonic-crystal lasers operating on Γ-point band-edge states of a photonic structure naturally exploit the so-called "nonradiative" modes. As the surface output coupling efficiency of these modes is low, they have relatively high Q factors, which favor lasing. We propose a new 2D photonic-crystal design that is capable of reversing this mode competition and achieving lasing on the radiative modes instead. Previously, this has only been shown in 1D structures, where the central idea is to introduce anisotropy into the system, both at unit-cell and resonator scales. By applying this concept to 2D photonic-crystal patterned terahertz frequency quantum cascade lasers, surface-emitting devices with diffraction-limited beams are demonstrated, with 17 mW peak output power.

17.
Opt Lett ; 39(9): 2629-32, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784063

RESUMEN

We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

18.
APL Bioeng ; 8(1): 016117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476403

RESUMEN

Terahertz (THz) imaging has long held promise for skin cancer detection but has been hampered by the lack of practical technological implementation. In this article, we introduce a technique for discriminating several skin pathologies using a coherent THz confocal system based on a THz quantum cascade laser. High resolution in vivo THz images (with diffraction limited to the order of 100 µm) of several different lesion types were acquired and compared against one another using the amplitude and phase values. Our system successfully separated pathologies using a combination of phase and amplitude information and their respective surface textures. The large scan field (50 × 40 mm) of the system allows macroscopic visualization of several skin lesions in a single frame. Utilizing THz imaging for dermatological assessment of skin lesions offers substantial additional diagnostic value for clinicians. THz images contain information complementary to the information contained in the conventional digital images.

19.
Opt Express ; 20(23): 25654-61, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23187384

RESUMEN

We report the measurement of the frequency noise power spectral density of a quantum cascade laser emitting at 2.5THz. The technique is based on heterodyning the laser emission frequency with a harmonic of the repetition rate of a near-infrared laser comb. This generates a beatnote in the radio frequency range that is demodulated using a tracking oscillator allowing measurement of the frequency noise. We find that the latter is strongly affected by the level of optical feedback, and obtain an intrinsic linewidth of ~230Hz, for an output power of 2mW.

20.
Opt Express ; 20(19): 20855-62, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23037209

RESUMEN

A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA