Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(27): 8343-8350, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38923939

RESUMEN

The shrinkage and collapse of wood cell walls during carbonization make it challenging to control the size and shape of carbonized wood (CW) through pre- or postprocessing (e.g., sawing, cutting, and milling). Herein, a shape-adaptive MXene shell (MS) is created on the surface of the wood cell walls. The MS limits the deformation of wood cell walls by spatial confinement and traction effects, which is supported by the inherent dimensional stability of the MS and the formation of new C-O-Ti covalent bonds between the wood cell wall and MS. Consequently, the volumetric shrinkage ratio of CW encapsulated by the MS (CW-MS) is significantly reduced from 54.8% for CW to 2.6% for CW-MS even at 800 °C. The harnessing of this collapse enables the production of CW-MS with prolonged stability and high electric conductivity (384 S m-1). These properties make CW-MS suitable for energy storage devices with various designed shapes, matching the increasingly compact and complex structures of electronic devices.

2.
Int J Biol Macromol ; 226: 588-596, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521699

RESUMEN

The demerits of the carbonized eggshell membrane (EM), such as high cost, high brittleness, immutable shape and size, greatly limit its application in demanding supercapacitors as free-standing electrode. Herein, the reconstituted EM (REM) with good flexibility and excellent size-customizability is developed, which is due to their fibrous structure and abundant surface polar groups. Ti3C2 nanosheet (a typical MXene) with ultra-high electrical conductivity and good electrochemical activity is then coated on REM surface, and undergoes a low-temperature carbonization (350 °C) to prepare CREM/T. Multi-functions of Ti3C2 are exhibited: (1) constructing a conductive network on REM surface by randomly stacking to yield a high electrical conductivity of 78.1 S cm-1, (2) being as a protective mold to remain the inherent flexibility and porosity of REM during carbonization, (3) creating nanopores by inducing self-activation, and (4) yielding a large capacitance of 1729 mF cm-2 at 0.5 mA cm-2 and a high rate capability of 82 % after increasing the current density by 50 folds. Furthermore, an all-EM-based supercapacitor is fabricated with REM as the separator and CREM/T as the electrode. It delivers a high energy density of 16.1 µW h cm-2 at 1301 µW cm-2, and shows stable capacitive behaviors during bending.


Asunto(s)
Frío , Cáscara de Huevo , Animales , Temperatura , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA