Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(17): 3415-3434, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37212869

RESUMEN

Identifying metabolites in model organisms is critical for many areas of biology, including unravelling disease aetiology or elucidating functions of putative enzymes. Even now, hundreds of predicted metabolic genes in Saccharomyces cerevisiae remain uncharacterized, indicating that our understanding of metabolism is far from complete even in well-characterized organisms. While untargeted high-resolution mass spectrometry (HRMS) enables the detection of thousands of features per analysis, many of these have a non-biological origin. Stable isotope labelling (SIL) approaches can serve as credentialing strategies to distinguish biologically relevant features from background signals, but implementing these experiments at large scale remains challenging. Here, we developed a SIL-based approach for high-throughput untargeted metabolomics in S. cerevisiae, including deep-48 well format-based cultivation and metabolite extraction, building on the peak annotation and verification engine (PAVE) tool. Aqueous and nonpolar extracts were analysed using HILIC and RP liquid chromatography, respectively, coupled to Orbitrap Q Exactive HF mass spectrometry. Of the approximately 37,000 total detected features, only 3-7% of the features were credentialed and used for data analysis with open-source software such as MS-DIAL, MetFrag, Shinyscreen, SIRIUS CSI:FingerID, and MetaboAnalyst, leading to the successful annotation of 198 metabolites using MS2 database matching. Comparable metabolic profiles were observed for wild-type and sdh1Δ yeast strains grown in deep-48 well plates versus the classical shake flask format, including the expected increase in intracellular succinate concentration in the sdh1Δ strain. The described approach enables high-throughput yeast cultivation and credentialing-based untargeted metabolomics, providing a means to efficiently perform molecular phenotypic screens and help complete metabolic networks.


Asunto(s)
Metabolómica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metabolómica/métodos , Metaboloma , Cromatografía Liquida , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834994

RESUMEN

We have previously reported that pathogenic variants in a key metabolite repair enzyme NAXD cause a lethal neurodegenerative condition triggered by episodes of fever in young children. However, the clinical and genetic spectrum of NAXD deficiency is broadening as our understanding of the disease expands and as more cases are identified. Here, we report the oldest known individual succumbing to NAXD-related neurometabolic crisis, at 32 years of age. The clinical deterioration and demise of this individual were likely triggered by mild head trauma. This patient had a novel homozygous NAXD variant [NM_001242882.1:c.441+3A>G:p.?] that induces the mis-splicing of the majority of NAXD transcripts, leaving only trace levels of canonically spliced NAXD mRNA, and protein levels below the detection threshold by proteomic analysis. Accumulation of damaged NADH, the substrate of NAXD, could be detected in the fibroblasts of the patient. In agreement with prior anecdotal reports in paediatric patients, niacin-based treatment also partly alleviated some clinical symptoms in this adult patient. The present study extends our understanding of NAXD deficiency by uncovering shared mitochondrial proteomic signatures between the adult and our previously reported paediatric NAXD cases, with reduced levels of respiratory complexes I and IV as well as the mitoribosome, and the upregulation of mitochondrial apoptotic pathways. Importantly, we highlight that head trauma in adults, in addition to paediatric fever or illness, may precipitate neurometabolic crises associated with pathogenic NAXD variants.


Asunto(s)
Conmoción Encefálica , Encefalopatías Metabólicas , Hidroliasas , Adulto , Niño , Preescolar , Humanos , Hidroliasas/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Conmoción Encefálica/complicaciones , Conmoción Encefálica/genética , Encefalopatías Metabólicas/etiología , Encefalopatías Metabólicas/genética
3.
J Biol Chem ; 296: 100699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895133

RESUMEN

N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas , Estereoisomerismo
4.
J Inherit Metab Dis ; 45(6): 1028-1038, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35866541

RESUMEN

The central cofactors NAD(P)H are prone to damage by hydration, resulting in formation of redox-inactive derivatives designated NAD(P)HX. The highly conserved enzymes NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE) function to repair intracellular NAD(P)HX. Recently, pathogenic variants in both the NAXD and NAXE genes were associated with rapid deterioration and death after an otherwise trivial fever, infection, or illness in young patients. As more patients are identified, distinct clinical features are emerging depending on the location of the pathogenic variant. In this review, we carefully catalogued the clinical features of all published NAXD deficiency patients and found distinct patterns in clinical presentations depending on which subcellular compartment is affected by the enzymatic deficiency. Exon 1 of NAXD contains a mitochondrial propeptide, and a unique cytosolic isoform is initiated from an alternative start codon in exon 2. NAXD deficiency patients with variants that affect both the cytosolic and mitochondrial isoforms present with neurological defects, seizures and skin lesions. Interestingly, patients with NAXD variants exclusively affecting the mitochondrial isoform present with myopathy, moderate neuropathy and a cardiac presentation, without the characteristic skin lesions, seizures or neurological degeneration. This suggests that cytosolic NAD(P)HX repair may protect from neurological damage, whereas muscle fibres may be more sensitive to mitochondrial NAD(P)HX damage. A deeper understanding of the clinical phenotype may facilitate rapid identification of new cases and allow earlier therapeutic intervention. Niacin-based therapies are promising, but advances in disease modelling for both NAXD and NAXE deficiency may identify more specific compounds as targeted treatments. In this review, we found distinct patterns in the clinical presentations of NAXD deficiency patients based on the location of the pathogenic variant, which determines the subcellular compartment that is affected by the enzymatic deficiency.


Asunto(s)
Enfermedades Metabólicas , NAD , Humanos , NAD/metabolismo , Racemasas y Epimerasas/metabolismo , Mitocondrias/metabolismo , Enfermedades Metabólicas/metabolismo , Convulsiones/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(4): 1241-1250, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30626647

RESUMEN

Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low-KM hexokinases, which catalyze the first step in glycolysis in most tissues. We show that 1,5AG6P is made by phosphorylation of 1,5-anhydroglucitol, a compound normally present in human plasma, by side activities of ADP-glucokinase and low-KM hexokinases. Granulocytes from patients deficient in G6PC3 or G6PT accumulate 1,5AG6P to concentrations (∼3 mM) that strongly inhibit hexokinase activity. In a model of G6PC3-deficient mouse neutrophils, physiological concentrations of 1,5-anhydroglucitol caused massive accumulation of 1,5AG6P, a decrease in glucose utilization, and cell death. Treating G6PC3-deficient mice with an inhibitor of the kidney glucose transporter SGLT2 to lower their blood level of 1,5-anhydroglucitol restored a normal neutrophil count, while administration of 1,5-anhydroglucitol had the opposite effect. In conclusion, we show that the neutropenia in patients with G6PC3 or G6PT mutations is a metabolite-repair deficiency, caused by a failure to eliminate the nonclassical metabolite 1,5AG6P.


Asunto(s)
Antiportadores/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Neutropenia/metabolismo , Fosforilación/fisiología , Animales , Muerte Celular/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Ratas Wistar
6.
Brain ; 142(1): 50-58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576410

RESUMEN

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.


Asunto(s)
Hidroliasas/deficiencia , Enfermedades Neurodegenerativas/genética , Preescolar , Simulación por Computador , Femenino , Fiebre/complicaciones , Fiebre/metabolismo , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Hidroliasas/genética , Lactante , Cinética , Lentivirus , Masculino , Mitocondrias/metabolismo , Mutación , NAD/análogos & derivados , NAD/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/metabolismo , Cultivo Primario de Células , Secuenciación Completa del Genoma
7.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373563

RESUMEN

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Asunto(s)
Aminohidrolasas/metabolismo , Glutatión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo , Aminohidrolasas/fisiología , Animales , Desaminación , Humanos , Hidrólisis , Ratones , Ratones Noqueados , Especificidad por Sustrato
8.
Biochemistry ; 58(4): 259-275, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30668112

RESUMEN

The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.


Asunto(s)
Ácidos Glicéricos/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/biosíntesis , Retroalimentación Fisiológica , Humanos , Hidrogenación , NAD/análogos & derivados , NAD/metabolismo , Oxidación-Reducción , Fosfoglicerato-Deshidrogenasa/química , Fosfoglicerato-Deshidrogenasa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
9.
Nucleic Acids Res ; 45(20): 11495-11514, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29059321

RESUMEN

The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the 'unknown enzyme problem'. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research.


Asunto(s)
Biocatálisis , Genoma Fúngico/genética , Genoma Humano/genética , Metaboloma/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Mapeo Cromosómico , Bases de Datos Genéticas , Bases de Datos de Proteínas , Enzimas/análisis , Enzimas/genética , Humanos , Metabolómica/métodos , Proteoma/genética , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 292(3): 1005-1028, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27909055

RESUMEN

Proteomes of even well characterized organisms still contain a high percentage of proteins with unknown or uncertain molecular and/or biological function. A significant fraction of those proteins is predicted to have catalytic properties. Here we aimed at identifying the function of the Saccharomyces cerevisiae Ydr109c protein and its human homolog FGGY, both of which belong to the broadly conserved FGGY family of carbohydrate kinases. Functionally identified members of this family phosphorylate 3- to 7-carbon sugars or sugar derivatives, but the endogenous substrate of S. cerevisiae Ydr109c and human FGGY has remained unknown. Untargeted metabolomics analysis of an S. cerevisiae deletion mutant of YDR109C revealed ribulose as one of the metabolites with the most significantly changed intracellular concentration as compared with a wild-type strain. In human HEK293 cells, ribulose could only be detected when ribitol was added to the cultivation medium, and under this condition, FGGY silencing led to ribulose accumulation. Biochemical characterization of the recombinant purified Ydr109c and FGGY proteins showed a clear substrate preference of both kinases for d-ribulose over a range of other sugars and sugar derivatives tested, including l-ribulose. Detailed sequence and structural analyses of Ydr109c and FGGY as well as homologs thereof furthermore allowed the definition of a 5-residue d-ribulokinase signature motif (TCSLV). The physiological role of the herein identified eukaryotic d-ribulokinase remains unclear, but we speculate that S. cerevisiae Ydr109c and human FGGY could act as metabolite repair enzymes, serving to re-phosphorylate free d-ribulose generated by promiscuous phosphatases from d-ribulose 5-phosphate. In human cells, FGGY can additionally participate in ribitol metabolism.


Asunto(s)
Pentosas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Silenciador del Gen , Células HEK293 , Humanos , Pentosas/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas/química , Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Nat Chem Biol ; 12(8): 601-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294321

RESUMEN

Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.


Asunto(s)
Glicolatos/metabolismo , Glucólisis , Lactatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azúcares Ácidos/metabolismo , Glicolatos/química , Glicolatos/toxicidad , Glucólisis/efectos de los fármacos , Células HCT116 , Humanos , Lactatos/química , Lactatos/toxicidad , Vía de Pentosa Fosfato/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/deficiencia , Fosforilación , Piruvato Quinasa/metabolismo , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Azúcares Ácidos/química , Azúcares Ácidos/toxicidad
13.
J Biol Chem ; 291(12): 6036-58, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26774271

RESUMEN

The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Glutaratos/metabolismo , L-Lactato Deshidrogenasa (Citocromo)/metabolismo , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Metabolismo de los Hidratos de Carbono , Expresión Génica , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Cinética , L-Lactato Deshidrogenasa (Citocromo)/química , L-Lactato Deshidrogenasa (Citocromo)/genética , Ácido Láctico/química , Ácido Oxaloacético/química , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Ácido Pirúvico/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Especificidad por Sustrato
15.
Proc Natl Acad Sci U S A ; 110(19): 7820-5, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610393

RESUMEN

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.


Asunto(s)
Regulación de la Expresión Génica , Hidroliasas/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Succinatos/metabolismo , Animales , Carboxiliasas , Catálisis , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inflamación , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Mycobacterium tuberculosis/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Nat Chem Biol ; 9(2): 72-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23334546

RESUMEN

It is increasingly evident that metabolites suffer various kinds of damage, that such damage happens in all organisms and that cells have dedicated systems for damage repair and containment. First, chemical biology is demonstrating that diverse metabolites are damaged by side reactions of 'promiscuous' enzymes or by spontaneous chemical reactions, that the products are useless or toxic and that the unchecked buildup of these products can be devastating. Second, genetic and genomic evidence from prokaryotes and eukaryotes is implicating a network of new, conserved enzymes that repair damaged metabolites or somehow pre-empt damage. Metabolite (that is, small-molecule) repair is analogous to macromolecule (DNA and protein) repair and seems from comparative genomic evidence to be equally widespread. Comparative genomics also implies that metabolite repair could be the function of many conserved protein families lacking known activities. How--and how well--cells deal with metabolite damage affects fields ranging from medical genetics to metabolic engineering.


Asunto(s)
Daño del ADN , Reparación del ADN , Metabolismo , Animales , Evolución Molecular , Ingeniería Genética/métodos , Genómica , Humanos , Modelos Biológicos , Modelos Químicos , Fenotipo , Proteínas/metabolismo
17.
J Inherit Metab Dis ; 38(4): 721-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25700988

RESUMEN

A good appraisal of the function of enzymes is essential for the understanding of inborn errors of metabolism. However, it is clear now that the 'one gene, one enzyme, one catalytic function' rule oversimplifies the actual situation. Genes often encode several related proteins, which may differ in their subcellular localisation, regulation or function. Furthermore, enzymes often show several catalytic activities. In some cases, this is because they are multifunctional, possessing two or more different active sites that catalyse different, physiologically related reactions. In enzymes with broad specificity or in multispecificity enzymes, a single type of catalytic site performs the same reaction on different physiological substrates at similar rates. Enzymes that act physiologically in only one reaction often show nonetheless substrate promiscuity: they act at low rates on compounds that resemble their physiological substrate(s), thus forming non-classical metabolites, which are in some cases eliminated by metabolite repair. In addition to their catalytic role, enzymes may have moonlighting functions, i.e. non-catalytic functions that are most often not related with their catalytic activity. Deficiency in such functions may participate in the phenotype of inborn errors of metabolism. Evolution has also made that some enzymes have lost their catalytic activity to become allosteric proteins.


Asunto(s)
Enzimas/genética , Enzimas/metabolismo , Metabolismo/genética , Animales , Humanos , Complejos Multienzimáticos , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Especificidad por Sustrato
18.
Biochem J ; 460(1): 49-58, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24611804

RESUMEN

Hydration of NAD(P)H to NAD(P)HX, which inhibits several dehydrogenases, is corrected by an ATP-dependent dehydratase and an epimerase recently identified as the products of the vertebrate Carkd (carbohydrate kinase domain) and Aibp (apolipoprotein AI-binding protein) genes respectively. The purpose of the present study was to assess the presence of these enzymes in mammalian tissues and determine their subcellular localization. The Carkd gene encodes proteins with a predicted mitochondrial propeptide (mCARKD), a signal peptide (spCARKD) or neither of them (cCARKD). Confocal microscopy analysis of transfected CHO (Chinese-hamster ovary) cells indicated that cCARKD remains in the cytosol, whereas mCARKD and spCARKD are targeted to the mitochondria and the endoplasmic reticulum respectively. Unlike the other two forms, spCARKD is N-glycosylated, supporting its targeting to the endoplasmic reticulum. The Aibp gene encodes two different proteins, which we show to be targeted to the mitochondria (mAIBP) and the cytosol (cAIBP). Quantification of the NAD(P)HX dehydratase and epimerase activities in rat tissues, performed after partial purification, indicated that both enzymes are widely distributed, with total activities of ≈3-10 nmol/min per g of tissue. Liver fractionation by differential centrifugation confirmed the presence of the dehydratase and the epimerase in the cytosol and in mitochondria. These data support the notion that NAD(P)HX repair is extremely widespread.


Asunto(s)
Proteínas Portadoras/metabolismo , Citosol/enzimología , Reparación del ADN/genética , Mitocondrias/enzimología , NADP/metabolismo , Fosfoproteínas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Factores de Transcripción/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Células CHO , Proteínas Portadoras/genética , Cricetinae , Cricetulus , Proteínas de Unión al ADN , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Ratones , Mitocondrias/genética , Datos de Secuencia Molecular , NADP/genética , Fosfoproteínas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Racemasas y Epimerasas , Ratas , Fracciones Subcelulares/enzimología , Distribución Tisular/genética , Factores de Transcripción/química
19.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38011998

RESUMEN

2-Hydroxyglutarate (2-HG) is an oncometabolite that accumulates in certain cancers. Gain-of-function mutations in isocitrate dehydrogenase lead to 2-HG accumulation at the expense of alpha-ketoglutarate. Elevated 2-HG levels inhibit histone and DNA demethylases, causing chromatin structure and gene regulation changes with tumorigenic consequences. We investigated the effects of elevated 2-HG levels in Saccharomyces cerevisiae, a yeast devoid of DNA methylation and heterochromatin-associated histone methylation. Our results demonstrate genetic background-dependent gene expression changes and altered H3K4 and H3K36 methylation at specific loci. Analysis of histone demethylase deletion strains indicated that 2-HG inhibits Rph1 sufficiently to induce extensive gene expression changes. Rph1 is the yeast homolog of human KDM4 demethylases and, among the yeast histone demethylases, was the most sensitive to the inhibitory effect of 2-HG in vitro. Interestingly, Rph1 deficiency favors gene repression and leads to further down-regulation of already silenced genes marked by low H3K4 and H3K36 trimethylation, but abundant in H3K36 dimethylation. Our results provide novel insights into the genome-wide effects of 2-HG and highlight Rph1 as its preferential demethylase target.


Asunto(s)
Histona Demetilasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Life Sci Alliance ; 7(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195117

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lipofuscinosis Ceroideas Neuronales , Animales , Humanos , Ésteres del Colesterol , Glicoproteínas de Membrana/genética , Metabolómica , Chaperonas Moleculares , Lipofuscinosis Ceroideas Neuronales/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA