Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurogenet ; 33(2): 52-63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30939963

RESUMEN

Several large or mid-scale collections of Drosophila enhancer traps have been recently created to allow for genetic swapping of GAL4 coding sequences to versatile transcription activators or suppressors such as LexA, QF, split-GAL4 (GAL4-AD and GAL4-DBD), GAL80 and QS. Yet a systematic analysis of the feasibility and reproducibility of these tools is lacking. Here we focused on InSITE GAL4 drivers that specifically label different subpopulations of olfactory neurons, particularly local interneurons (LNs), and genetically swapped the GAL4 domain for LexA, GAL80 or QF at the same locus. We found that the major utility-limiting factor for these genetic swaps is that many do not fully reproduce the original GAL4 expression patterns. Different donors exhibit distinct efficacies for reproducing original GAL4 expression patterns. The successfully swapped lines reported here will serve as valuable reagents and expand the genetic toolkits of Drosophila olfactory circuit research.


Asunto(s)
Animales Modificados Genéticamente/genética , Proteínas de Drosophila/genética , Técnicas Genéticas , Factores de Transcripción/genética , Animales , Drosophila , Femenino , Masculino
2.
J Neurosci ; 36(27): 7184-97, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383593

RESUMEN

UNLABELLED: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.


Asunto(s)
Potenciales de la Membrana/fisiología , Retina/citología , Células Ganglionares de la Retina/fisiología , Visión Ocular/fisiología , Vías Visuales/fisiología , Animales , Animales Recién Nacidos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Luz , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Ganglionares de la Retina/clasificación , Células Ganglionares de la Retina/efectos de los fármacos , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Transducina/genética , Transducina/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Visión Ocular/genética , beta-Galactosidasa/metabolismo
3.
Sci Adv ; 8(7): eabm7723, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179957

RESUMEN

Variations in neuronal connectivity occur widely in nervous systems from invertebrates to mammals. Yet, it is unclear how neuronal variability originates, to what extent and at what time scales it exists, and what functional consequences it might carry. To assess inter- and intraindividual neuronal variability, it would be ideal to analyze the same identified neuron across different brain hemispheres and individuals. Here, using genetic labeling and electron microscopy connectomics, we show that an identified inhibitory olfactory local interneuron, TC-LN, exhibits extraordinary variability in its glomerular innervation patterns. Moreover, TC-LN's innervation of the VL2a glomerulus, which processes food signals and modulates mating behavior, is sexually dimorphic, is influenced by female's courtship experience, and correlates with food intake in mated females. Mating also affects output connectivity of TC-LN to specific local interneurons. We propose that mating-associated variability of TC-LNs regulates how food odor is interpreted by an inhibitory network to modulate feeding.

4.
J Exp Neurosci ; 13: 1179069519826056, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001062

RESUMEN

The Drosophila olfactory system is an attractive model for exploring the wiring logic of complex neural circuits. Remarkably, olfactory local interneurons exhibit high diversity and variability in their morphologies and intrinsic properties. Although olfactory sensory and projection neurons have been extensively studied of development and wiring; the development, mechanisms for establishing diversity, and integration of olfactory local interneurons into the developing circuit remain largely undescribed. In this review, we discuss some challenges and recent advances in the study of Drosophila olfactory interneurons.

5.
Nat Commun ; 9(1): 4729, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401872

RESUMEN

The original version of this Article contained errors in Figs. 4 and 6. In Fig. 4, panel a, text labels UAS-FLP and LexAop2>stop>myr::smGdP-HA were shifted upwards during typesetting of the figure, and in Fig. 6, panel h, the number 15 was incorrectly placed on the heat map scale. These have now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 2232, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884811

RESUMEN

Drosophila olfactory local interneurons (LNs) in the antennal lobe are highly diverse and variable. How and when distinct types of LNs emerge, differentiate, and integrate into the olfactory circuit is unknown. Through systematic developmental analyses, we found that LNs are recruited to the adult olfactory circuit in three groups. Group 1 LNs are residual larval LNs. Group 2 are adult-specific LNs that emerge before cognate sensory and projection neurons establish synaptic specificity, and Group 3 LNs emerge after synaptic specificity is established. Group 1 larval LNs are selectively reintegrated into the adult circuit through pruning and re-extension of processes to distinct regions of the antennal lobe, while others die during metamorphosis. Precise temporal control of this pruning and cell death shapes the global organization of the adult antennal lobe. Our findings provide a road map to understand how LNs develop and contribute to constructing the olfactory circuit.


Asunto(s)
Drosophila melanogaster/metabolismo , Interneuronas/metabolismo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Animales Modificados Genéticamente , Antenas de Artrópodos/citología , Antenas de Artrópodos/crecimiento & desarrollo , Antenas de Artrópodos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Interneuronas/clasificación , Larva/crecimiento & desarrollo , Larva/metabolismo , Microscopía Confocal , Modelos Neurológicos , Morfogénesis , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/clasificación , Transmisión Sináptica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA