RESUMEN
RNA editing by adenosine deaminases acting on dsRNA (ADAR) has become of increasing medical relevance, particularly because aberrant ADAR1 activity has been associated with autoimmunity and malignancies. However, the role of ADAR1 in dendritic cells (DC), representing critical professional APCs, is unknown. We have established conditional murine CD11c Cre-mediated ADAR1 gene ablation, which did not induce general apoptosis in CD11c+ cells but instead manifests in cell type-specific effects in DC subpopulations. Bone marrow-derived DC subset analysis revealed an incapacity to differentiate CD103 DC+ in both bulk bone marrow and purified pre-DC lineage progenitor assays. ADAR1 deficiency further resulted in a preferential systemic loss of CD8+/CD103+ DCs, revealing critical dependency on ADAR1, whereas other DC subpopulations were moderately affected or unaffected. Additionally, alveolar macrophages were depleted and dysfunctional, resembling pulmonary alveolar proteinosis. These results reveal an unrecognized role of ADAR1 in DC subset homeostasis and unveils the cell type-specific effects of RNA editing.
Asunto(s)
Adenosina Desaminasa/metabolismo , Células Dendríticas/inmunología , Homeostasis/inmunología , Macrófagos Alveolares/inmunología , Animales , Proliferación Celular , Células Dendríticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Edición de ARN , Linfocitos T/citología , Linfocitos T/inmunologíaRESUMEN
Plasmacytoid dendritic cells (pDC) are of increasing interest in cancer vaccine development, but many functions of these highly specialized, multifaceted cells are poorly understood. The transferrin receptor CD71 has also been suggested to function as an antigen uptake receptor on professional antigen-presenting cells. In this study, we employed multiparameter flow cytometry to investigate CD71 expression on various leukocyte subsets, including DC subsets, granulocytes, macrophages, T and B lymphocytes, γδ T cells, and natural killer cells. Cells from various lymphoid and non-lymphoid murine tissues were analyzed using fluorochrome-conjugated monoclonal antibodies. High CD71 expression (90-100%) was observed, uniquely on pDC amongst the leukocyte populations examined, in both lymphoid and non-lymphoid tissues, including other DC subsets. In contrast, CD71 expression on non-tissue pDC, in the bone marrow and peripheral blood, was reduced. The cause and function of this high tissue pDC-selective CD71 expression remain to be examined.
Asunto(s)
Antígenos CD/biosíntesis , Receptores de Transferrina/biosíntesis , Animales , Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Citometría de Flujo , Granulocitos/inmunología , Granulocitos/metabolismo , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Receptores de Transferrina/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismoRESUMEN
BACKGROUND: Numerous studies have described the immunosuppressive capacity of mesenchymal stem cells (MSC) but these studies use mixtures of heterogeneous progenitor cells for in vitro expansion. Recently, multipotent MSC have been prospectively identified in murine bone marrow (BM) on the basis of PDFGRa(+) SCA1(+) CD45(-) TER119(-) (PαS) expression but the immunomodulatory capacity of these MSC is unknown. METHODS: We isolated PαS MSC by high-purity FACS sorting of murine BM and after in vitro expansion we analyzed the in vivo immunomodulatory activity during acute pneumonia. PαS MSC (1 × 10(6)) were applied intratracheally 4 h after acute respiratory Klebsiella pneumoniae induced infection. RESULTS: PαS MSC treatment resulted in significantly reduced alveolitis and protein leakage in comparison to mock-treated controls. PαS MSC-treated mice exhibited significantly reduced alveolar TNF-α and IL-12p70 expression, while IL-10 expression was unaffected. Dissection of respiratory dendritic cell (DC) subsets by multiparameter flow cytometry revealed significantly reduced lung DC infiltration and significantly reduced CD86 costimulatory expression on lung CD103(+) DC in PαS MSC-treated mice. In the post-acute phase of pneumonia, PαS MSC-treated animals exhibited significantly reduced respiratory IL-17(+) CD4(+) T cells and IFN-γ(+) CD4(+) T cells. Moreover, PαS MSC treatment significantly improved overall pneumonia survival and did not increase bacterial load. CONCLUSION: In this study we demonstrated for the first time the feasibility and in vivo immunomodulatory capacity of prospectively defined MSC in pneumonia.
Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Infecciones por Klebsiella/cirugía , Klebsiella pneumoniae/inmunología , Pulmón/inmunología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Neumonía Bacteriana/cirugía , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/microbiología , Animales , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Separación Celular/métodos , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Modelos Animales de Enfermedad , Estudios de Factibilidad , Citometría de Flujo , Mediadores de Inflamación/metabolismo , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Pulmón/metabolismo , Pulmón/microbiología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología , Factores de TiempoRESUMEN
BACKGROUND: Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. METHOD: By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection. RESULTS: Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators. CONCLUSION: These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.
Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/patología , Infecciones por Klebsiella/patología , Klebsiella pneumoniae , Sistema Respiratorio/inmunología , Sistema Respiratorio/patología , Animales , Antígenos CD/metabolismo , Antígeno B7-2/metabolismo , Antígeno B7-H1/metabolismo , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas In Vitro , Cadenas alfa de Integrinas/metabolismo , Infecciones por Klebsiella/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Sistema Respiratorio/metabolismoRESUMEN
Plasmacytoid dendritic cells (pDC) are critical to antiviral defense because of their high production of type I IFNs; less is known regarding their functions in bacterial infection. Moreover, pDC are involved in immunomodulation. A stable pool of regulatory T cells (Treg) is crucial for maintaining immune homeostasis. However, interactions between pDC and Treg regarding the regulation of Treg homeostasis are understudied. By using BDCA2-DTR mice as a systemic pDC depletion model, we identified increased steady-state numbers of FoxP3+ T cells with an effector Treg-like phenotype in lungs, liver, and spleen tissues. During sublethal, pulmonary Klebsiella pneumoniae infection, pDC deficiency also elevated respiratory FoxP3+ T cell numbers. Additionally, the improvement in acute pneumonia survival until day 5 post infection was accompanied by impaired proinflammatory cytokine production. In contrast, pDC-depleted mice exhibited a delayed clinical recovery during the post-acute phase. Therefore, we assume that pDC act as immunomodulators supporting the rapid onset of immune response in a proinflammatory manner and regulate inflammation or tissue regeneration in the post-acute phase. In summary, pDC assist in FoxP3+ T cell homeostasis and the regulation of Klebsiella-pneumonia progression.