Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(16): E1514-23, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23542382

RESUMEN

Aging is a major risk factor for many neurological diseases and is associated with mild cognitive decline. Previous studies suggest that aging is accompanied by reduced synapse number and synaptic plasticity in specific brain regions. However, most studies, to date, used either postmortem or ex vivo preparations and lacked key in vivo evidence. Thus, whether neuronal arbors and synaptic structures remain dynamic in the intact aged brain and whether specific synaptic deficits arise during aging remains unknown. Here we used in vivo two-photon imaging and a unique analysis method to rigorously measure and track the size and location of axonal boutons in aged mice. Unexpectedly, the aged cortex shows circuit-specific increased rates of axonal bouton formation, elimination, and destabilization. Compared with the young adult brain, large (i.e., strong) boutons show 10-fold higher rates of destabilization and 20-fold higher turnover in the aged cortex. Size fluctuations of persistent boutons, believed to encode long-term memories, also are larger in the aged brain, whereas bouton size and density are not affected. Our data uncover a striking and unexpected increase in axonal bouton dynamics in the aged cortex. The increased turnover and destabilization rates of large boutons indicate that learning and memory deficits in the aged brain arise not through an inability to form new synapses but rather through decreased synaptic tenacity. Overall our study suggests that increased synaptic structural dynamics in specific cortical circuits may be a mechanism for age-related cognitive decline.


Asunto(s)
Envejecimiento/fisiología , Axones/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Factores de Edad , Animales , Corteza Cerebral/citología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Terminales Presinápticos/ultraestructura
2.
PLoS Biol ; 7(4): e98, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19402755

RESUMEN

The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations.


Asunto(s)
Axones/fisiología , Plasticidad Neuronal/fisiología , Semaforinas/metabolismo , Núcleos Talámicos/embriología , Tálamo/embriología , Corteza Visual/embriología , Vías Visuales/embriología , Animales , Femenino , Cuerpos Geniculados/embriología , Cuerpos Geniculados/fisiología , Ratones , Ratones Noqueados , Telencéfalo/embriología , Telencéfalo/fisiología , Núcleos Talámicos/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología
3.
Neural Dev ; 12(1): 6, 2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438183

RESUMEN

BACKGROUND: Sensory processing relies on projections from the thalamus to the neocortex being established during development. Information from different sensory modalities reaching the thalamus is segregated into specialized nuclei, whose neurons then send inputs to cognate cortical areas through topographically defined axonal connections. Developing thalamocortical axons (TCAs) normally approach the cortex by extending through the subpallium; here, axonal navigation is aided by distributed guidance cues and discrete cell populations, such as the corridor neurons and the internal capsule (IC) guidepost cells. In mice lacking Semaphorin-6A, axons from the dorsal lateral geniculate nucleus (dLGN) bypass the IC and extend aberrantly in the ventral subpallium. The functions normally mediated by Semaphorin-6A in this system remain unknown, but might depend on interactions with Plexin-A2 and Plexin-A4, which have been implicated in other neurodevelopmental processes. METHODS: We performed immunohistochemical and neuroanatomical analyses of thalamocortical wiring and subpallial development in Sema6a and Plxna2; Plxna4 null mutant mice and analyzed the expression of these genes in relevant structures. RESULTS: In Plxna2; Plxna4 double mutants we discovered TCA pathfinding defects that mirrored those observed in Sema6a mutants, suggesting that Semaphorin-6A - Plexin-A2/Plexin-A4 signaling might mediate dLGN axon guidance at subpallial level. In order to understand where and when Semaphorin-6A, Plexin-A2 and Plexin-A4 may be required for proper subpallial TCA guidance, we then characterized their spatiotemporal expression dynamics during early TCA development. We observed that the thalamic neurons whose axons are misrouted in these mutants normally express Semaphorin-6A but not Plexin-A2 or Plexin-A4. By contrast, all three proteins are expressed in corridor cells and other structures in the developing basal ganglia. This finding could be consistent with an hypothetical action of Plexins as guidance signals through Sema6A as a receptor on dLGN axons, and/or with their indirect effect on TCA guidance due to functions in the morphogenesis of subpallial intermediate targets. In support of the latter possibility, we observed that in both Plxna2; Plxna4 and Sema6a mutants some IC guidepost cells abnormally localize in correspondence of the ventral path misrouted TCAs elongate into. CONCLUSIONS: These findings implicate Semaphorin-6A - Plexin-A2/Plexin-A4 interactions in dLGN axon guidance and in the spatiotemporal organization of guidepost cell populations in the mammalian subpallium.


Asunto(s)
Orientación del Axón , Corteza Cerebral/crecimiento & desarrollo , Cuerpos Geniculados/crecimiento & desarrollo , Cuerpos Geniculados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Receptores de Superficie Celular/genética , Semaforinas/genética , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo
4.
PLoS One ; 6(11): e26488, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22132072

RESUMEN

Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism.


Asunto(s)
Sistema Límbico/crecimiento & desarrollo , Sistema Límbico/fisiopatología , Trastornos Mentales/psicología , Mutación/genética , Red Nerviosa/fisiopatología , Corteza Prefrontal/patología , Semaforinas/genética , Animales , Ansiedad/complicaciones , Ansiedad/fisiopatología , Ansiedad/psicología , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Marcha/fisiología , Humanos , Sistema Límbico/patología , Locomoción/fisiología , Masculino , Memoria , Trastornos Mentales/complicaciones , Trastornos Mentales/genética , Trastornos Mentales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Fenotipo , Corteza Prefrontal/fisiopatología
5.
Neural Dev ; 3: 34, 2008 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19063725

RESUMEN

BACKGROUND: The trajectory of corticospinal tract (CST) axons from cortex to spinal cord involves a succession of choice points, each of which is controlled by multiple guidance molecules. To assess the involvement of transmembrane semaphorins and their plexin receptors in the guidance of CST axons, we have examined this tract in mutants of Semaphorin-6A (Sema6A), Plexin-A2 (PlxnA2) and Plexin-A4 (PlxnA4). RESULTS: We describe defects in CST guidance in Sema6A mutants at choice points at the mid-hindbrain boundary (MHB) and in navigation through the pons that dramatically affect how many axons arrive to the hindbrain and spinal cord and result in hypoplasia of the CST. We also observe defects in guidance within the hindbrain where a proportion of axons aberrantly adopt a ventrolateral position and fail to decussate. This function in the hindbrain seems to be mediated by the known Sema6A receptor PlxnA4, which is expressed by CST axons. Guidance at the MHB, however, appears independent of this and of the other known receptor, PlxnA2, and may depend instead on Sema6A expression on CST axons themselves at embryonic stages. CONCLUSION: These data identify Sema6A as a major contributor to the guidance of CST axons at multiple choice points. They highlight the active control of guidance at the MHB and also implicate the inferior olive as an important structure in the guidance of CST axons within the hindbrain. They also suggest that Sema6A, which is strongly expressed by oligodendrocytes, may affect CST regeneration in adults.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tractos Piramidales/crecimiento & desarrollo , Semaforinas/metabolismo , Transducción de Señal , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Tractos Piramidales/citología , Tractos Piramidales/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Rombencéfalo/anatomía & histología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Semaforinas/genética , Médula Espinal/anatomía & histología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
6.
Neural Dev ; 2: 21, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17971221

RESUMEN

BACKGROUND: In developing neurons, somal migration and initiation of axon outgrowth often occur simultaneously and are regulated in part by similar classes of molecules. When neurons reach their final destinations, however, somal translocation and axon extension are uncoupled. Insights into the mechanisms underlying this process of disengagement came from our study of the behaviour of embryonic spinal motor neurons following ablation of boundary cap cells. These are neural crest derivatives that transiently reside at motor exit points, central nervous system (CNS):peripheral nervous system (PNS) interfaces where motor axons leave the CNS. In the absence of boundary cap cells, motor neuron cell bodies migrate along their axons into the periphery, suggesting that repellent signals from boundary cap cells regulate the selective gating of somal migration and axon outgrowth at the motor exit point. Here we used RNA interference in the chick embryo together with analysis of null mutant mice to identify possible boundary cap cell ligands, their receptors on motor neurons and cytoplasmic signalling molecules that control this process. RESULTS: We demonstrate that targeted knock down in motor neurons of Neuropilin-2 (Npn-2), a high affinity receptor for class 3 semaphorins, causes their somata to migrate to ectopic positions in ventral nerve roots. This finding was corroborated in Npn-2 null mice, in which we identified motor neuron cell bodies in ectopic positions in the PNS. Our RNA interference studies further revealed a role for Plexin-A2, but not Plexin-A1 or Plexin-A4. We show that chick and mouse boundary cap cells express Sema3B and 3G, secreted semaphorins, and Sema6A, a transmembrane semaphorin. However, no increased numbers of ectopic motor neurons are found in Sema3B null mouse embryos. In contrast, Sema6A null mice display an ectopic motor neuron phenotype. Finally, knockdown of MICAL3, a downstream semaphorin/Plexin-A signalling molecule, in chick motor neurons led to their ectopic positioning in the PNS. CONCLUSION: We conclude that semaphorin-mediated repellent interactions between boundary cap cells and immature spinal motor neurons regulates somal positioning by countering the drag exerted on motor neuron cell bodies by their axons as they emerge from the CNS at motor exit points. Our data support a model in which BC cell semaphorins signal through Npn-2 and/or Plexin-A2 receptors on motor neurons via a cytoplasmic effector, MICAL3, to trigger cytoskeletal reorganisation. This leads to the disengagement of somal migration from axon extension and the confinement of motor neuron cell bodies to the spinal cord.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Diferenciación Celular/genética , Embrión de Pollo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Inhibidores de Crecimiento/genética , Inhibidores de Crecimiento/metabolismo , Ligandos , Ratones , Proteínas de Microfilamentos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Interferencia de ARN/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Transducción de Señal/genética , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA