Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(21): 10525-33, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26432831

RESUMEN

During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.


Asunto(s)
Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , Ribosomas/química , Microscopía por Crioelectrón , Mutación , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(16): 6118-23, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22492979

RESUMEN

Double-stranded RNA viruses in the family Reoviridae are capable of transcribing and capping nascent mRNA within an icosahedral viral capsid that remains intact throughout repeated transcription cycles. However, how the highly coordinated mRNA transcription and capping process is facilitated by viral capsid proteins is still unknown. Cypovirus provides a good model system for studying the mRNA transcription and capping mechanism of viruses in the family Reoviridae. Here, we report a full backbone model of a transcribing cypovirus built from a near-atomic-resolution density map by cryoelectron microscopy. Compared with the structure of a nontranscribing cypovirus, the major capsid proteins of transcribing cypovirus undergo a series of conformational changes, giving rise to structural changes in the capsid shell: (i) an enlarged capsid chamber, which provides genomic RNA with more flexibility to move within the densely packed capsid, and (ii) a widened peripentonal channel in the capsid shell, which we confirmed to be a pathway for nascent mRNA. A rod-like structure attributable to a partially resolved nascent mRNA was observed in this channel. In addition, conformational change in the turret protein results in a relatively open turret at each fivefold axis. A GMP moiety, which is transferred to 5'-diphosphorylated mRNA during the mRNA capping reaction, was identified in the pocket-like guanylyltransferase domain of the turret protein.


Asunto(s)
Microscopía por Crioelectrón/métodos , Reoviridae/genética , Reoviridae/ultraestructura , Transcripción Genética , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética
3.
Nucleic Acids Res ; 40(21): 10851-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965132

RESUMEN

Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Chaperonas Moleculares/química , Proteínas Ribosómicas/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación Enlazados a GTP Fosfohidrolasas/química , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Factores de Iniciación de Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Electricidad Estática , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
4.
Nat Struct Mol Biol ; 25(11): 1019-1027, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30297778

RESUMEN

MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells.


Asunto(s)
MicroARNs/genética , Sistemas de Lectura Abierta , Regiones no Traducidas 3' , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Emparejamiento Base , Regulación de la Expresión Génica , Silenciador del Gen , Células HeLa , Humanos , MicroARNs/metabolismo , Modelos Biológicos , Biosíntesis de Proteínas , Motivo de Reconocimiento de ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
5.
Nat Struct Mol Biol ; 23(2): 125-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26809121

RESUMEN

EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Factores de Iniciación de Péptidos/química , Estructura Terciaria de Proteína , Transporte de ARN , Aminoacil-ARN de Transferencia/química , Subunidades Ribosómicas Grandes Bacterianas/química
6.
Nat Struct Mol Biol ; 21(9): 817-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108354

RESUMEN

During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor G de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/genética , Conformación Proteica , Transporte de ARN , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA