Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(10): e106632, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33739466

RESUMEN

HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.


Asunto(s)
VIH-1/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética
2.
BMC Endocr Disord ; 24(1): 30, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443895

RESUMEN

BACKGROUND: The association between the triglyceride-glucose (TyG) index and arterial stiffness in individuals with normoglycaemia remains unclear. We aimed to evaluate the relationship between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia, providing additional evidence for predicting early arterial stiffness. METHODS: This study included 15,453 adults who participated in the NAGALA Physical Examination Project of the Murakami Memorial Hospital in Gifu, Japan, from 2004 to 2015. Data on clinical demographic characteristics and serum biomarker levels were collected. The TyG index was calculated from the logarithmic transformation of fasting triglycerides multiplied by fasting glucose, and arterial stiffness was measured using the estimated pulse wave velocity calculated based on age and mean blood pressure. The association between the TyG index and arterial stiffness was analysed using a logistic regression model. RESULTS: The prevalence of arterial stiffness was 3.2% (500/15,453). After adjusting for all covariates, the TyG index was positively associated with arterial stiffness as a continuous variable (adjusted odds ratio (OR) = 1.86; 95% Confidence Interval = 1.45-2.39; P<0.001). Using the quartile as the cutoff point, a regression analysis was performed for arterial stiffness when the TyG index was converted into a categorical variable. After adjusting for all covariates, the OR showed an upward trend; the trend test was P<0.001. Subgroup analysis revealed a positive association between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia and different characteristics. CONCLUSION: The TyG index in Japanese individuals with normoglycaemia is significantly correlated with arterial stiffness, and the TyG index may be a predictor of early arterial stiffness.


Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Adulto , Humanos , Estudios Transversales , Japón/epidemiología , Glucosa , Triglicéridos
3.
Mediators Inflamm ; 2024: 8869510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445290

RESUMEN

Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/ß-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/ß-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/ß-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.


Asunto(s)
Infecciones Bacterianas , beta Catenina , Humanos , Bacterias , Vía de Señalización Wnt , Inflamación , Antiinflamatorios
4.
Mikrochim Acta ; 191(3): 151, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386184

RESUMEN

A novel luminol derivative of N-(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)acrylamide (DTA) with excellent luminescence efficiency was designed and synthesized. Furthermore, a molecularly imprinted electrochemiluminescence sensor (MIECLS) was fabricated to detect ultratrace levels of human serum albumin (HSA) with high sensitivity and selectivity via a click reaction. The molecularly imprinted polymers (MIPs) were formed on the electrode surface via electropolymerization with HSA as a template molecule and catechol as a monomer. In the detection process, the -SH group of HSA on the electrode and the C = C bond of acryloyl group in DTA formed a new C-S bond via the Michael addition reaction to construct the MIECLS. The higher the concentration of HSA, the greater electrochemiluminescence (ECL) intensity measured. Taking advantage of MIECLS for ECL detection (scanning potential, - 0.4 to 0.5 V), there was a good linear relationship between ECL intensity and the logarithm of HSA concentration in the range 5 × 10-9 to 1 × 10-13 mg mL-1. The limit of detection (LOD) of the sensor was 1.05 × 10-15 mg mL-1. The sensor exhibited outstanding selectivity and stability. The sensor was applied to detect HSA in human serum with good recoveries of 97.7-105.2%. The concentration of HSA was detected by electrochemical method using the gating effect of MIP.


Asunto(s)
Acrilamida , Luminol , Humanos , Técnicas Electroquímicas , Electrodos , Albúmina Sérica Humana
5.
Virus Genes ; 59(5): 678-687, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380814

RESUMEN

Hepatitis B virus (HBV) infection is a noteworthy cause of liver diseases, especially cirrhosis and hepatocellular carcinomas. However, the interaction between the host and HBV has not been fully elucidated. Peptide YY (PYY) is a 36-amino-acid gastrointestinal hormone that is mainly involved in the regulation of the human digestive system. This study found that PYY expression was reduced in HBV-expressing hepatocytes and HBV patients. Overexpression of PYY could significantly inhibit HBV RNA, DNA levels, and the secretion of HBsAg. In addition, PYY inhibits HBV RNA dependent on transcription through reducing the activities of CP/Enh I/II, SP1 and SP2. Meanwhile, PYY blocks HBV replication independent on core, polymerase protein and ε structure of pregenomic RNA. These results suggest that PYY can impair HBV replication by suppressing viral promoters/enhancers in hepatocytes. Our data shed light on a novel role for PYY as anti-HBV restriction factor.


Asunto(s)
Hepatitis B , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/genética , Péptido YY , Replicación Viral/genética , Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , ARN
6.
Appl Opt ; 62(36): 9422-9429, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38108765

RESUMEN

Digital image correlation (DIC) is a widely used photomechanical method for measuring surface deformation of materials. Practical engineering applications of DIC often encounter challenges such as discontinuous deformation fields, noise interference, and difficulties in measuring boundary deformations. To address these challenges, a new, to the best of our knowledge, DIC method called MCNN-DIC is proposed in this study by incorporating mechanical constraints using neural network technology. The proposed method applied compatibility equation constraints to the measured deformation field through a semi-supervised learning approach, thus making it more physical. The effectiveness of the proposed MCNN-DIC method was demonstrated through simulated experiments and real deformation fields of nuclear graphite material. The results show that the MCNN-DIC method achieves higher accuracy in measuring non-uniform deformation fields than a traditional mechanical constraints-based DIC and can rapidly measure deformation fields without requiring extensive pre-training of the neural network.

7.
Mikrochim Acta ; 190(6): 208, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165282

RESUMEN

A novel magnetic Ti3C2Tx-MXene/Fe3O4 composite was prepared from Ti3C2Tx and magnetic Fe3O4. The characterizations by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) exhibited that the Ti3C2Tx/Fe3O4 nanomaterial presented an outstanding conductivity and a large specific area, which could improve the electron transfer rate, leading to the amplification of the sensor's signal. Furthermore, an ultrasensitive molecularly imprinted electrochemical sensor based on MXene/Fe3O4 composites was fabricated for detecting methylmalonic acid (MMA) with high selectivity. The current intensity of differential pulse voltammetry of the sensor presented a good linear relationship with the logarithm of MMA concentration ranging from 9 × 10-15 mol L-1 to 9 × 10-13 mol L-1. The detection limit of the sensor was 2.33 × 10-16 mol L-1. The fabricated sensor was utilized for detecting MMA in human serum samples with excellent recoveries. Therefore, this method significantly improved the sensitivity of detection, and constitutes an  affordable sensing platform for trace detection of organic carboxylic acid.

8.
Eur J Neurol ; 29(1): 47-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390074

RESUMEN

BACKGROUND AND PURPOSE: Creutzfeldt-Jakob disease (CJD) is a transmissible spongiform encephalopathy characterized by rapid onset and high mortality. Despite considerable progress in the treatment and diagnosis of CJD, patient prognosis remains poor. Many studies have found that the immune response is associated with the pathophysiology of CJD. However, few studies have reported coexpression correlations between genes associated with CJD and the immune response. This study was undertaken to construct a network of coexpressed immune- and CJD-related genes that may reveal new biomarkers and therapeutic targets for CJD. METHODS: Gene expression data from 11 CJD patients and 10 nonneurological controls were obtained from the Gene Expression Omnibus database. High-confidence protein-protein interaction (PPI) data were downloaded from the Human Protein Reference Database, and gene expression data of immune- and CJD-associated genes were downloaded from the AmiGo16 and DisGeNET databases, respectively. An immune/CJD-related expression network was constructed based on Pearson correlation coefficients and PPI networks, and a CJD-directed neighbour coexpression network was extracted, in which we compared the gene expression patterns and correlations between different groups. The samples were classified using CJD-specific modules, and differentially expressed genes (DEGs) between the CJD and nonneurological controls groups were identified within the CJD-specific modules. Further functional analysis was performed using Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis of genes in each CJD-specific module. RESULTS: We constructed an immune/CJD-related coexpression gene network comprising 2007 nodes and 5268 edges, with immune-associated genes occupying important positions in the network. In the CJD-directed neighbour coexpression network, immune-associated genes exhibited the highest coexpression level with their interacting genes. Results from Pearson correlation analysis showed that most of the CJD-associated genes were positively correlated with immune-associated genes. Screening for CJD-specific modules identified MAPK1, CASP3, APP, MAPT, SNCA, and YWHAH, indicating a close connection between CJD and the immune response. Analyses of coexpression status and expression level of CJD-specific genes revealed a very high coexpression pattern for any two genes, with most genes being DEGs. Finally, KEGG enrichment analyses of all CJD-specific genes showed that the pathophysiology of CJD is closely related to infection and the immune response. CONCLUSIONS: Our coexpression network analysis revealed a close connection between CJD- and immune-associated genes, and we identified six CJD-specific modules. Biological function analysis of CJD-specific module genes revealed that immune responses are associated with CJD pathophysiology and may provide novel diagnostic and therapeutic biomarkers for this disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Redes Reguladoras de Genes , Biomarcadores/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Perfilación de la Expresión Génica/métodos , Humanos , Mapas de Interacción de Proteínas
9.
Mikrochim Acta ; 189(4): 141, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35278133

RESUMEN

A Ti3C2 membrane was prepared by doping UIO-66-NH2 with Ti3C2 through hydrogen bonds. When the doping mass ratio of Ti3C2 and UIO-66-NH2 was 6:1, the electrochemical performance was optimal. Characterization was done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) which exhibited hierarchical cave-like physiognomy, large specific area, outstanding electronic conductive network, and excellent film-forming property. Moreover, the Ti3C2 film was analyzed via atomic force microscopy (AFM), which displayed good mechanical properties and rough surface morphology. The fabricated Ti3C2 membrane/GCE sensor was applied to the detection of dopamine (working potential of + 0.264 V vs. Ag/AgCl) with LOD of 0.81 fM and a sensitivity of 14.72 µA fM-1 cm-2. It was demonstrated that the Ti3C2 membrane can be used to construct nonenzymatic sensors with excellent performance. The fabricated sensor has high selectivity and stability and has good practicability with recoveries of 101.2-103.5% and a relative standard deviation (RSD) of 1.2-2.4%.


Asunto(s)
Dopamina , Compuestos Organometálicos , Técnicas Electroquímicas/métodos , Estructuras Metalorgánicas , Ácidos Ftálicos , Titanio/química
10.
Am J Emerg Med ; 46: 462-468, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33214022

RESUMEN

PURPOSE: The purpose of this study was to establish a nomogram to predict the risk of complicating ventricular tachyarrhythmia (VTA) in patients with acute myocardial infarction (AMI) during hospitalization and to verify the accuracy of the model. CLINICAL INFORMATION AND METHOD: The authors enrolled the information of 503 patients who were diagnosed as AMI from January 2017 to December 2019. The cohort was randomly divided into a training set and a testing set at a ratio of 70%:30%. A total of 13 clinical indicators were screened by the least absolute shrinkage and selection operator (LASSO) regression and Boruta arithmetic independently in order to figure out the optimal feature variables. Multivariable logistic regression analysis was applied to establish the prediction model represented by a nomogram incorporating the selected feature variables. The performance of the nomogram was assessed by discrimination, calibration and clinical usefulness. C-Statistics with the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis were used to evaluate the identification ability, calibration and clinical practicability respectively. The prediction model was verified on the testing set to ensure its accuracy. RESULTS: Five feature variables as percutaneous coronary intervention (PCI) timing after hospitalization, ejection fraction (EF), high-sensitive troponin T (hsTnT) score, infection and estimated glomerular filtration rate (eGFR) were selected by both LASSO regression and Boruta arithmetic. C-statistics with AUC was 0.764 (95% confidence interval: 0.690-0.838) in the training set while a slight increasing to 0.804 (95% confidence interval: 0.673-0.935) in the testing set. Calibration curve illustrated that the predicted and actually diagnosis of VTA probabilities were satisfactory on both training set and testing validation. Decision curve analysis indicated that the nomogram can be used in clinical settings as it has a threshold of between 4% to 90% along with a net benefit. CONCLUSION: The nomogram with five variables is practical to clinicians in estimating the risk of complicating VTA after AMI during hospitalization.


Asunto(s)
Infarto del Miocardio/terapia , Nomogramas , Medición de Riesgo , Taquicardia Ventricular/epidemiología , Fibrilación Ventricular/epidemiología , Anciano , Diabetes Mellitus/epidemiología , Femenino , Tasa de Filtración Glomerular , Humanos , Hipertensión/epidemiología , Hipopotasemia/epidemiología , Infecciones/epidemiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Infarto del Miocardio/sangre , Infarto del Miocardio/fisiopatología , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Intervención Coronaria Percutánea , Reproducibilidad de los Resultados , Estudios Retrospectivos , Volumen Sistólico , Troponina T/sangre
11.
Mikrochim Acta ; 189(1): 33, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34935073

RESUMEN

A novel approach for trace detection of fipronil with a molecularly imprinted electrochemiluminescence sensor (MIECLS) is proposed. The sensitivity is significantly improved via signal amplification of the enzymatic reaction of horseradish peroxidase (HRP) released from encapsulated liposomes which linked onto the template molecules after rebinding. The molecularly imprinted polymer membrane was prepared through the electropolymerization of monomers with fipronil as a template. After the elution of the template molecules, the analyte fipronil was reabsorbed into the cavities. HRP-encapsulated liposomes were linked to the target molecules by light-triggered click reaction. The higher the concentration of the target was, the more HRP-encapsulated liposomes were present on the molecularly imprinted polymer (MIP) sensor. Then, HRP was liberated from liposomes, and the catalytic degradation of hydrogen peroxide (H2O2) by HRP occurs, which changed the electrochemiluminescence intensity of luminol significantly. The change of the ∆ECL intensity was linearly proportional to the logarithm of the fipronil concentration ranging from 1.00 × 10-14 to 1.00 × 10-9 mol/L, and the detection limit was 7.77 × 10-16 mol/L. The recoveries obtained ranged from 95.7 to 105.8% with RSD < 5%. The sensitivity of the detection was significantly improved, and the analysis process was simplified in that the incubation step required in the conventional method was avoided. The sensor proposed provides a feasible platform for ultra-trace amount determination.


Asunto(s)
Peroxidasa de Rábano Silvestre/química , Liposomas/química , Polímeros Impresos Molecularmente/química , Residuos de Plaguicidas/análisis , Pirazoles/análisis , Animales , Armoracia/enzimología , Brassica napus/química , Citrus/química , Química Clic , Huevos/análisis , Técnicas Electroquímicas/métodos , Contaminación de Alimentos/análisis , Peróxido de Hidrógeno/química , Límite de Detección , Mediciones Luminiscentes/métodos , Luminol/química , Musa/química , Oxidación-Reducción
12.
J Biol Chem ; 294(38): 14043-14054, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366735

RESUMEN

Adenosine deaminases acting on RNA-1 (ADAR1) involves adenosine to inosine RNA editing and microRNA processing. ADAR1 is known to be involved in the replication of various viruses, including hepatitis C and D. However, the role of ADAR1 in hepatitis B virus (HBV) infection has not yet been elucidated. Here, for the first time, we demonstrated ADAR1 antiviral activity against HBV. ADAR1 has two splicing isoforms in human hepatocytes: constitutive p110 protein and interferon-α (IFN-α)-responsive p150 protein. We found that overexpression of ADAR1 decreased HBV RNA in an HBV culture model. A catalytic-site mutant ADAR1 also decreased HBV RNA levels, whereas another adenosine deaminases that act on the RNA (ADAR) family protein, ADAR2, did not. Moreover, the induction of ADAR1 by stimulation with IFN-α also reduced HBV RNA levels. Decreases in endogenous ADAR1 expression by knock-down or knock-out increased HBV RNA levels. A major hepatocyte-specific microRNA, miRNA-122, was found to be positively correlated with ADAR1 expression, and exogenous miRNA-122 decreased both HBV RNA and DNA, whereas, conversely, transfection with a miRNA-122 inhibitor increased them. The reduction of HBV RNA by ADAR1 expression was abrogated by p53 knock-down, suggesting the involvement of p53 in the ADAR1-mediated reduction of HBV RNA. This study demonstrated, for the first time, that ADAR1 plays an antiviral role against HBV infection by increasing the level of miRNA-122 in hepatocytes.


Asunto(s)
Adenosina Desaminasa/metabolismo , Virus de la Hepatitis B/fisiología , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología , Adenosina Desaminasa/genética , Línea Celular , Virus de la Hepatitis B/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , MicroARNs/metabolismo , Isoformas de Proteínas , Edición de ARN , Empalme del ARN , Proteínas de Unión al ARN/genética
13.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068645

RESUMEN

Zika virus (ZIKV) is genetically and biologically related to other Flaviviridae family members and has disseminated to many countries. It is associated with severe consequences, including the abnormal development of the neural system in fetuses and neurological diseases in adults. Therefore, the development of anti-ZIKV drugs is of paramount importance. Screening of generic drugs revealed that several nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, ibuprofen, naproxen, acetaminophen, and lornoxicam, potently inhibited the entry of Zika virus Env/HIV-1-pseudotyped viruses. They also significantly inhibited the replication of wild-type ZIKV both in cell lines and in primary human fetal endothelial cells. Interestingly, the NSAIDs exerted this inhibitory effect by potently reducing the expression of AXL, the entry cofactor of ZIKV. Further studies showed that the NSAIDs downregulated the prostaglandin E2/prostaglandin E receptor 2 (EP2)/cAMP/protein kinase A (PKA) signaling pathway and reduced PKA-dependent CDC37 phosphorylation and the interaction between CDC37 and HSP90, which subsequently facilitated CHIP/ubiquitination/proteasome-mediated AXL degradation. Taken together, our results highlight a new mechanism of action of antiviral agents which may assist in designing a convenient strategy for treating ZIKV-infected patients.IMPORTANCE Zika virus (ZIKV) infection, which causes congenital malformations, including microcephaly and other neurological disorders, has attracted global attention. We observed that several NSAIDs significantly inhibited ZIKV infection. Based on our observations, we propose a novel mechanism of action of antiviral compounds which involves the blockade of virus entry via degradation of the entry cofactor. Furthermore, NSAIDs can be practically used for preventing ZIKV infection in pregnant women, as certain NSAIDs, including ibuprofen and acetaminophen, are considered clinically safe.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Células Endoteliales/virología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Virus Zika/fisiología , Células A549 , Animales , Línea Celular , Chlorocebus aethiops , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Proteolisis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/virología , Tirosina Quinasa del Receptor Axl
14.
Org Biomol Chem ; 17(47): 10088-10096, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31754666

RESUMEN

The thermal and acid-catalyzed rearrangement mechanisms of arenesulfenanilides were investigated theoretically via density functional theory (DFT) calculations. The results indicate that the o-aminodiphenyl sulfide rearrangement involves a novel S[1,3]-sigmatropic shift followed by tautomerization, while the p-aminodiphenyl sulfide rearrangement proceeds via tandem [3,3]- and [3,3]-sigmatropic shifts followed by tautomerization under thermal conditions. Furthermore, computational studies reveal that water assists the proton shift more efficiently than anilines during tautomerization. Moreover, under the acid-catalyzed conditions, the o-aminodiphenyl sulfide rearrangement involves an S[1,3]-sigmatropic shift similar to that under the thermal conditions, while the p-aminodiphenyl sulfide rearrangement proceeds via cascade S[1,3]- and S[1,3]-sigmatropic shifts followed by water-aided tautomerization. The current theoretical studies provide new insights into the formation mechanism of o/p-aminodiphenyl sulfides in the arenesulfenanilide rearrangement and support the unprecedented suprafacial symmetry-allowed S[1,3]-sigmatropic shift with an inversion of the configuration in the migrating sulfur atom. The mechanism is affected by the reaction medium. Disproportionation of arenesulfenanilides into diaryl disulfides and azobenzenes is a competitive radical pathway during the arenesulfenanilide rearrangements.

15.
Mediators Inflamm ; 2019: 5497467, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467485

RESUMEN

Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC) treatment, radioresistance is still a major threat for some subsets of patients. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is tightly regulated and plays critical roles in mediating cell proliferation, growth, and survival. Thus, IGF-1R may be a potential therapeutic target for patients with different malignancies. However, its mechanism in NPC is not fully investigated. Linsitinib is an oral small molecule and is a tyrosine kinase inhibitor (TKI) of IGF-1R, which has been known for antitumor effects used widely. Here, we evaluated the proliferation and radiosensitivity of NPC cell lines (CNE-2 and SUNE-1) after linsitinib treatment. We found that linsitinib suppresses IGF-1-induced cell proliferation through inhibiting Akt and ERK phosphorylation. Moreover, linsitinib further boosted IR-induced DNA damage, G2-M cell cycle delay, and apoptosis in NPC cells. Finally, linsitinib reversed radioresistant NPC cells by decreasing the phosphorylation of IGF-1R. Our data indicated that the combination of linsitinib and IR and targeting IGF-1R by linsitinib could be a promising therapeutic strategy for NPC.


Asunto(s)
Carcinoma Nasofaríngeo/metabolismo , Receptor IGF Tipo 1/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Humanos , Imidazoles/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Radiación Ionizante
16.
PLoS Pathog ; 11(4): e1004780, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25836330

RESUMEN

Transforming growth factor (TGF)-ß inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-ß is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-ß was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-ß mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-ß causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.


Asunto(s)
Citidina Desaminasa/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , Factor de Crecimiento Transformador beta/metabolismo , Desaminasas APOBEC , Western Blotting , Línea Celular , Citosina Desaminasa/metabolismo , Hepatitis B/genética , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , ARN Viral/metabolismo , Transfección , Replicación Viral/fisiología
17.
Proc Natl Acad Sci U S A ; 110(6): 2246-51, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341589

RESUMEN

Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.


Asunto(s)
Citidina Desaminasa/metabolismo , Virus de la Hepatitis B/genética , Edición de ARN , ARN Viral/genética , ARN Viral/metabolismo , Inmunidad Adaptativa , Linfocitos B/inmunología , Linfocitos B/virología , Secuencia de Bases , Desaminación , Productos del Gen pol/metabolismo , Células HEK293 , Células Hep G2 , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Humanos , Cambio de Clase de Inmunoglobulina , Datos de Secuencia Molecular , Mutación , Nucleocápside/genética , Nucleocápside/metabolismo , Replicón , Hipermutación Somática de Inmunoglobulina , Replicación Viral
18.
Biochem Biophys Res Commun ; 457(3): 295-9, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25576866

RESUMEN

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are cellular DNA/RNA-editing enzymes that play pivotal roles in the innate immune response to viral infection. APOBEC3 (A3) proteins were reported to hypermutate the genome of human papillomavirus 16 (HPV16), the causative agent of cervical cancer. However, hypermutation did not affect viral DNA maintenance, leaving the exact role of A3 against HPV infection elusive. Here we examine whether A3 proteins affect the virion assembly using an HPV16 pseudovirion (PsV) production system, in which PsVs are assembled from its capsid proteins L1/L2 encapsidating a reporter plasmid in 293FT cells. We found that co-expression of A3A or A3C in 293FT cells greatly reduced the infectivity of PsV. The reduced infectivity of PsV assembled in the presence of A3A, but not A3C, was attributed to the decreased copy number of the encapsidated reporter plasmid. On the other hand, A3C, but not A3A, efficiently bound to L1 in co-immunoprecipitation assays, which suggests that this physical interaction may lead to reduced infectivity of PsV assembled in the presence of A3C. These results provide mechanistic insights into A3s' inhibitory effects on the assembly phase of the HPV16 virion.


Asunto(s)
Citidina Desaminasa/fisiología , Papillomavirus Humano 16/patogenicidad , Proteínas/fisiología , Proteínas de la Cápside/fisiología , Citidina Desaminasa/genética , Femenino , Genoma Viral , Células HEK293 , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiología , Humanos , Proteínas Oncogénicas Virales/fisiología , Unión Proteica , Proteínas/genética , Virión/genética , Virión/patogenicidad , Virión/fisiología , Virulencia , Ensamble de Virus
19.
J Virol ; 88(2): 1308-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227842

RESUMEN

Apolipoprotein B mRNA-editing catalytic polypeptide 3 (APOBEC3) proteins are interferon (IFN)-inducible antiviral factors that counteract various viruses such as hepatitis B virus (HBV) and human immunodeficiency virus type 1 (HIV-1) by inducing cytidine (C)-to-uracil (U) mutations in viral DNA and inhibiting reverse transcription. However, whether APOBEC3 proteins (A3s) can hypermutate human papillomavirus (HPV) viral DNA and exhibit antiviral activity in human keratinocyte remains unknown. Here we examined the involvement of A3s in the HPV life cycle using cervical keratinocyte W12 cells, which are derived from low-grade lesions and retain episomal HPV16 genomes in their nuclei. We focused on the viral E2 gene as a potential target for A3-mediated hypermutation because this gene is frequently found as a boundary sequence in integrated viral DNA. Treatment of W12 cells with beta interferon (IFN-ß) increased expression levels of A3s such as A3A, A3F, and A3G and induced C-to-U conversions in the E2 gene in a manner depending on inhibition of uracil DNA glycosylase. Exogenous expression of A3A and A3G also induced E2 hypermutation in W12 cells. IFN-ß-induced hypermutation was blocked by transfection of small interfering RNAs against A3G (and modestly by those against A3A). However, the HPV16 episome level was not affected by overexpression of A3A and A3G in W12 cells. This study demonstrates that endogenous A3s upregulated by IFN-ß induce E2 hypermutation of HPV16 in cervical keratinocytes, and a pathogenic consequence of E2 hypermutation is discussed.


Asunto(s)
Citosina Desaminasa/metabolismo , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/genética , Interferón beta/metabolismo , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/enzimología , Mutación Puntual , Desaminasas APOBEC , Secuencia de Bases , Línea Celular , Citidina Desaminasa , Citosina Desaminasa/genética , ADN Viral/genética , ADN Viral/metabolismo , Femenino , Papillomavirus Humano 16/metabolismo , Humanos , Queratinocitos/enzimología , Queratinocitos/metabolismo , Queratinocitos/virología , Datos de Secuencia Molecular , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología
20.
mBio ; : e0108824, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953634

RESUMEN

Numerous host factors, in addition to human angiotensin-converting enzyme 2 (hACE2), have been identified as coreceptors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrating broad viral tropism and diversified druggable potential. We and others have found that antihistamine drugs, particularly histamine receptor H1 (HRH1) antagonists, potently inhibit SARS-CoV-2 infection. In this study, we provided compelling evidence that HRH1 acts as an alternative receptor for SARS-CoV-2 by directly binding to the viral spike protein. HRH1 also synergistically enhanced hACE2-dependent viral entry by interacting with hACE2. Antihistamine drugs effectively prevent viral infection by competitively binding to HRH1, thereby disrupting the interaction between the spike protein and its receptor. Multiple inhibition assays revealed that antihistamine drugs broadly inhibited the infection of various SARS-CoV-2 mutants with an average IC50 of 2.4 µM. The prophylactic function of these drugs was further confirmed by authentic SARS-CoV-2 infection assays and humanized mouse challenge experiments, demonstrating the therapeutic potential of antihistamine drugs for combating coronavirus disease 19.IMPORTANCEIn addition to human angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can utilize alternative cofactors to facilitate viral entry. In this study, we discovered that histamine receptor H1 (HRH1) not only functions as an independent receptor for SARS-CoV-2 but also synergistically enhances ACE2-dependent viral entry by directly interacting with ACE2. Further studies have demonstrated that HRH1 facilitates the entry of SARS-CoV-2 by directly binding to the N-terminal domain of the spike protein. Conversely, antihistamine drugs, primarily HRH1 antagonists, can competitively bind to HRH1 and thereby prevent viral entry. These findings revealed that the administration of repurposable antihistamine drugs could be a therapeutic intervention to combat coronavirus disease 19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA