Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochim Biophys Acta ; 1852(8): 1676-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25981745

RESUMEN

A germline mutation (A339V) in thyroid transcription factor-1 (TITF1/NKX2.1) was shown to be associated with multinodular goiter (MNG) and papillary thyroid carcinoma (PTC) pathogenesis. The overexpression of A339V TTF1 significantly promoted hormone-independent growth of the normal thyroid cells, representing a cause of MNG and/or PTC. Nevertheless, the underlying mechanism still remains unclear. In this study, we used liquid chromatography (LC)-tandem mass spectrometry (MS/MS)-based shotgun proteomics comparing the global protein expression profiles of normal thyroid cells (PCCL3) that overexpressed the wild-type or A339V TTF1 to identify key proteins implicated in this process. Proteomic pathway analysis revealed that the aberrant activation of epidermal growth factor (EGF) signaling is significantly associated with the overexpression of A339V TTF1 in PCCL3, and clathrin heavy chain (Chc) is the most significantly up-regulated protein of the pathway. Intriguingly, dysregulated Chc expression facilitated a nuclear accumulation of pStat3, leading to an enhanced cell proliferation of the A339V clones. Down-regulation and abrogation of Chc-mediated cellular trafficking, respectively, by knocking-down Chc and ectopic expression of a dominant-negative (DN) form of Chc could significantly reduce the nuclear pStat3 and rescue the aberrant cell proliferation of the A339V clones. Subsequent expression analysis further revealed that CHC and pSTAT3 are co-overexpressed in 66.7% (10/15) MNG. Taken together, our results suggest that the A339V TTF1 mutant protein up-regulates the cellular expression of Chc, resulting in a constitutive activation of Stat3 pathway, and prompting the aberrant growth of thyroid cells. This extensive growth signal may promote the development of MNG.


Asunto(s)
Proliferación Celular , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Bocio Nodular/patología , Glándula Tiroides/citología , Glándula Tiroides/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células COS , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma Papilar , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Niño , Chlorocebus aethiops , Femenino , Regulación Neoplásica de la Expresión Génica , Bocio Nodular/genética , Bocio Nodular/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Adulto Joven
2.
Gastroenterology ; 149(7): 1837-1848.e5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26261006

RESUMEN

BACKGROUND & AIMS: Hirschsprung disease is characterized by a deficit in enteric neurons, which are derived from neural crest cells (NCCs). Aberrant hedgehog signaling disrupts NCC differentiation and might cause Hirschsprung disease. We performed genetic analyses to determine whether hedgehog signaling is involved in pathogenesis. METHODS: We performed deep-target sequencing of DNA from 20 patients with Hirschsprung disease (16 men, 4 women), and 20 individuals without (controls), and searched for mutation(s) in GLI1, GLI2, GLI3, SUFU, and SOX10. Biological effects of GLI mutations were tested in luciferase reporter assays using HeLa or neuroblastoma cell lines. Development of the enteric nervous system was studied in Sufu(f/f), Gli3(Δ699), Wnt1-Cre, and Sox10(NGFP) mice using immunohistochemical and whole-mount staining procedures to quantify enteric neurons and glia and analyze axon fasciculation, respectively. NCC migration was studied using time-lapse imaging. RESULTS: We identified 3 mutations in GLI in 5 patients with Hirschsprung disease but no controls; all lead to increased transcription of SOX10 in cell lines. SUFU, GLI, and SOX10 form a regulatory loop that controls the neuronal vs glial lineages and migration of NCCs. Sufu mutants mice had high Gli activity, due to loss of Sufu, disrupting the regulatory loop and migration of enteric NCCs, leading to defective axonal fasciculation, delayed gut colonization, or intestinal hypoganglionosis. The ratio of enteric neurons to glia correlated inversely with Gli activity. CONCLUSIONS: We identified mutations that increase GLI activity in patients with Hirschsprung disease. Disruption of the SUFU-GLI-SOX10 regulatory loop disrupts migration of NCCs and development of the enteric nervous system in mice.


Asunto(s)
Sistema Nervioso Entérico/anomalías , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Estudios de Casos y Controles , Linaje de la Célula , Movimiento Celular , Análisis Mutacional de ADN/métodos , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/metabolismo , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Cresta Neural/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
3.
Neurosignals ; 22(1): 1-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24356576

RESUMEN

The enteric nervous system (ENS) in mammals is derived from a small pool of progenitor cells, namely enteric neural crest cells (NCCs). These precursor cells proliferate extensively to expand, migrate over a long distance to fully colonize the developing gut and differentiate into millions of neurons and glia to form a functional ENS for regulating the complex behaviors of the gut. This developmental process relies on a precise regulation of the neuronal and glial differentiation and requires an appropriate balance between the migration, proliferation and differentiation of enteric NCCs and their progeny. Hedgehog (Hh) and Notch signalings are essential for almost every aspect of ENS development, and they confer both the long- and short-range signals to coordinate these seemingly diverse cellular processes. In this review, we summarize the roles of Hh and Notch signaling, particularly in the context of gut organogenesis and ENS development and emphasize how combinatory Hh and Notch signaling renders functional diversity as well as specificity.


Asunto(s)
Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/metabolismo , Proteínas Hedgehog/metabolismo , Cresta Neural/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA