Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.792
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39305903

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the DMD gene. Muscle fibers rely on the coordination of multiple cell types for repair and regenerative capacity. To elucidate the cellular and molecular changes in these cell types under pathologic conditions, we generated a rhesus monkey model for DMD that displays progressive muscle deterioration and impaired motor function, mirroring human conditions. By leveraging these DMD monkeys, we analyzed freshly isolated muscle tissues using single-cell RNA sequencing (scRNA-seq). Our analysis revealed changes in immune cell landscape, a reversion of lineage progressing directions in fibrotic fibro-adipogenic progenitors (FAPs), and TGF-ß resistance in FAPs and muscle stem cells (MuSCs). Furthermore, MuSCs displayed cell-intrinsic defects, leading to differentiation deficiencies. Our study provides important insights into the pathogenesis of DMD, offering a valuable model and dataset for further exploration of the underlying mechanisms, and serves as a suitable platform for developing and evaluating therapeutic interventions.

2.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454157

RESUMEN

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Conejos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Macaca mulatta , Macrófagos , Nanovacunas , Fagocitosis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
3.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525759

RESUMEN

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Animales , Encéfalo/fisiología , Cromosomas Humanos X , Ritmo Circadiano , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Edición Génica , Humanos , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Mutación , Dolor , Síndrome de Rett/fisiopatología , Sueño , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Transcriptoma
4.
Mol Cell ; 84(11): 2104-2118.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38761795

RESUMEN

Circular RNAs (circRNAs) are stable RNAs present in cell-free RNA, which may comprise cellular debris and pathogen genomes. Here, we investigate the phenomenon and mechanism of cellular uptake and intracellular fate of exogenous circRNAs. Human myeloid cells and B cells selectively internalize extracellular circRNAs. Macrophage uptake of circRNA is rapid, energy dependent, and saturable. CircRNA uptake can lead to translation of encoded sequences and antigen presentation. The route of internalization influences immune activation after circRNA uptake, with distinct gene expression programs depending on the route of RNA delivery. Genome-scale CRISPR screens and chemical inhibitor studies nominate macrophage scavenger receptor MSR1, Toll-like receptors, and mTOR signaling as key regulators of receptor-mediated phagocytosis of circRNAs, a dominant pathway to internalize circRNAs in parallel to macropinocytosis. These results suggest that cell-free circRNA serves as an "eat me" signal and danger-associated molecular pattern, indicating orderly pathways of recognition and disposal.


Asunto(s)
Macrófagos , Fagocitosis , ARN Circular , Transducción de Señal , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Macrófagos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Linfocitos B/metabolismo , Linfocitos B/inmunología , Receptores Depuradores de Clase A/metabolismo , Receptores Depuradores de Clase A/genética , Presentación de Antígeno , Pinocitosis , Ratones
5.
Immunity ; 55(6): 1067-1081.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35659337

RESUMEN

Immunoregulatory B cells impede antitumor immunity through unknown features and mechanisms. We report the existence of leucine-tRNA-synthase-2 (LARS2)-expressing B cell (LARS B) subset with a transforming growth factor-ß1 (TGF-ß1)-dominant regulatory feature in both mouse and human progressive colorectal cancer (CRC). Of note, LARS B cells exhibited a leucine nutrient preference and displayed active mitochondrial aminoacyl-tRNA biosynthesis. They were located outside the tertiary lymphoid structure and correlated with colorectal hyperplasia and shortened survival in CRC patients. A leucine diet induced LARS B cell generation, whereas LARS B cell deletion by Lars2 gene ablation or leucine blockage repressed CRC immunoevasion. Mechanistically, LARS2 programmed mitochondrial nicotinamide adenine dinucleotide (NAD+) regeneration and oxidative metabolism, thus determining the regulatory feature of LARS B cells in which the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was involved. We propose a leucine-dieting scheme to inhibit LARS B cells, which is safe and useful for CRC therapy.


Asunto(s)
Aminoacil-ARNt Sintetasas , Neoplasias Colorrectales , Animales , Humanos , Leucina , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , ARN de Transferencia
6.
Mol Cell ; 83(10): 1710-1724.e7, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37141888

RESUMEN

Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.


Asunto(s)
Edición Génica , Transactivadores , Ratones , Animales , Transactivadores/metabolismo , Citosina , Mutación , ADN Mitocondrial/genética , Sistemas CRISPR-Cas
7.
Cell ; 161(5): 1175-1186, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000486

RESUMEN

The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.


Asunto(s)
Epéndimo/citología , Células-Madre Neurales/metabolismo , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Movimiento Celular , Epéndimo/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Ratones , Células-Madre Neurales/citología , Péptidos/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Nature ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236747

RESUMEN

Two-terminal monolithic perovskite-silicon tandem solar cells demonstrate huge advantages in power conversion efficiency (PCE) compared to their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a significant challenge for perovskite-silicon tandem cells3,4. By exploiting the nanoscale discretely distributed LiF ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer intertwined passivation strategy that combines efficient electron extraction with further suppression of nonradiative recombination. We constructed perovskite-silicon tandem devices on double-side textured Czochralski (CZ)-based silicon heterojunction cell, which featured a mildly-textured front surface and a heavily-textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite-silicon tandem achieved an independently certified stabilized PCE of 33.89%, accompanied by an impressive fill factor (FF) of 83.0% and an open-circuit voltage (Voc) of nearly 1.97 volts. To our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley-Queisser limit of 33.7%.

9.
Cell ; 159(4): 751-65, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417153

RESUMEN

Model organisms usually possess a small nervous system but nevertheless execute a large array of complex behaviors, suggesting that some neurons are likely multifunctional and may encode multiple behavioral outputs. Here, we show that the C. elegans interneuron AIY regulates two distinct behavioral outputs: locomotion speed and direction-switch by recruiting two different circuits. The "speed" circuit is excitatory with a wide dynamic range, which is well suited to encode speed, an analog-like output. The "direction-switch" circuit is inhibitory with a narrow dynamic range, which is ideal for encoding direction-switch, a digital-like output. Both circuits employ the neurotransmitter ACh but utilize distinct postsynaptic ACh receptors, whose distinct biophysical properties contribute to the distinct dynamic ranges of the two circuits. This mechanism enables graded C. elegans synapses to encode both analog- and digital-like outputs. Our studies illustrate how an interneuron in a simple organism encodes multiple behavioral outputs at the circuit, synaptic, and molecular levels.


Asunto(s)
Caenorhabditis elegans/fisiología , Interneuronas/fisiología , Acetilcolina/metabolismo , Animales , Locomoción , Microscopía Electrónica , Vías Nerviosas , Neuronas/fisiología , Análisis de la Célula Individual
10.
Nature ; 617(7959): 118-124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100915

RESUMEN

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Asunto(s)
Biomasa , Brasinoesteroides , Grano Comestible , Transducción de Señal , Triticum , Alelos , Brasinoesteroides/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Eliminación de Gen , Genes de Plantas , Giberelinas/metabolismo , Fenotipo , Triticum/clasificación , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Proteínas de Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo
11.
Nature ; 624(7992): 621-629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049589

RESUMEN

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Asunto(s)
Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Islotes Pancreáticos , Humanos , Estudios de Casos y Controles , Separación Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Reproducibilidad de los Resultados
12.
Nature ; 601(7892): 228-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022594

RESUMEN

Air pollution contributes to the global burden of disease, with ambient exposure to fine particulate matter of diameters smaller than 2.5 µm (PM2.5) being identified as the fifth-ranking risk factor for mortality globally1. Racial/ethnic minorities and lower-income groups in the USA are at a higher risk of death from exposure to PM2.5 than are other population/income groups2-5. Moreover, disparities in exposure to air pollution among population and income groups are known to exist6-17. Here we develop a data platform that links demographic data (from the US Census Bureau and American Community Survey) and PM2.5 data18 across the USA. We analyse the data at the tabulation area level of US zip codes (N is approximately 32,000) between 2000 and 2016. We show that areas with higher-than-average white and Native American populations have been consistently exposed to average PM2.5 levels that are lower than areas with higher-than-average Black, Asian and Hispanic or Latino populations. Moreover, areas with low-income populations have been consistently exposed to higher average PM2.5 levels than areas with high-income groups for the years 2004-2016. Furthermore, disparities in exposure relative to safety standards set by the US Environmental Protection Agency19 and the World Health Organization20 have been increasing over time. Our findings suggest that more-targeted PM2.5 reductions are necessary to provide all people with a similar degree of protection from environmental hazards. Our study is observational and cannot provide insight into the drivers of the identified disparities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Etnicidad , Humanos , Renta , Material Particulado/efectos adversos , Material Particulado/análisis
13.
Plant Cell ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321218

RESUMEN

Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight. gcn5 mutant grains were smaller and contained less starch. GCN5 promoted the expression of the starch biosynthesis genes SUCROSE SYNTHASE 2 (Sus2) and STARCH-BRANCHING ENZYME Ic (SBEIc) by regulating H3K9ac and H3K14ac levels in their promoters. Moreover, immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CAMTA2 physically interacts with GCN5. The CAMTA2-GCN5 complex activated Sus2 and SBEIc by directly binding to their promoters and depositing H3K9ac and H3K14ac marks during wheat endosperm development. camta2 knockout mutants exhibited similar phenotypes to gcn5 mutants, including smaller grains that contained less starch. In gcn5 mutants, transcripts of high molecular weight (HMW) Glutenin (Glu) genes were downregulated, leading to reduced HMW glutenin protein levels, gluten content, and sodium dodecyl sulfate (SDS) sedimentation volume. However, the association of GCN5 with Glu genes was independent of CAMTA2, since GCN5 enrichment on Glu promoters was unchanged in camta2 knockouts. Finally, we identified a CAMTA2-AH3 elite allele that corresponded with enhanced grain size and weight, serving as a candidate gene for breeding wheat varieties with improved grain weight.

14.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
15.
Cell ; 149(3): 605-17, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541431

RESUMEN

Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.


Asunto(s)
Células Madre Embrionarias/citología , Técnicas Genéticas , Ratones Transgénicos , Animales , Blastocisto/citología , Núcleo Celular/metabolismo , Femenino , Marcación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo
16.
Nature ; 600(7888): 319-323, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819663

RESUMEN

Lung cancer is one of the most aggressive tumour types. Targeted therapies stratified by oncogenic drivers have substantially improved therapeutic outcomes in patients with non-small-cell lung cancer (NSCLC)1. However, such oncogenic drivers are not found in 25-40% of cases of lung adenocarcinoma, the most common histological subtype of NSCLC2. Here we identify a novel fusion transcript of CLIP1 and LTK using whole-transcriptome sequencing in a multi-institutional genome screening platform (LC-SCRUM-Asia, UMIN000036871). The CLIP1-LTK fusion was present in 0.4% of NSCLCs and was mutually exclusive with other known oncogenic drivers. We show that kinase activity of the CLIP1-LTK fusion protein is constitutively activated and has transformation potential. Treatment of Ba/F3 cells expressing CLIP1-LTK with lorlatinib, an ALK inhibitor, inhibited CLIP1-LTK kinase activity, suppressed proliferation and induced apoptosis. One patient with NSCLC harbouring the CLIP1-LTK fusion showed a good clinical response to lorlatinib treatment. To our knowledge, this is the first description of LTK alterations with oncogenic activity in cancers. These results identify the CLIP1-LTK fusion as a target in NSCLC that could be treated with lorlatinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Transformación Celular Neoplásica/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 15/genética , Humanos , Lactamas/farmacología , Lactamas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nature ; 597(7874): 77-81, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471275

RESUMEN

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Asunto(s)
Ciclo del Carbono , Bosques , Insectos/metabolismo , Árboles/metabolismo , Animales , Secuestro de Carbono , Clima , Ecosistema , Mapeo Geográfico , Cooperación Internacional
18.
Proc Natl Acad Sci U S A ; 121(33): e2401109121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116136

RESUMEN

Na5YSi4O12 (NYSO) is demonstrated as a promising electrolyte with high ionic conductivity and low activation energy for practical use in solid Na-ion batteries. Solid-state NMR was employed to identify the six types of coordination of Na+ ions and migration pathway, which is vital to master working mechanism and enhance performance. The assignment of each sodium site is clearly determined from high-quality 23Na NMR spectra by the aid of Density Functional Theory calculation. Well-resolved 23Na exchangespectroscopy and electrochemical tracer exchange spectra provide the first experimental evidence to show the existence of ionic exchange between sodium at Na5 and Na6 sites, revealing that Na transport route is possibly along three-dimensional chain of open channel-Na4-open channel. Variable-temperature NMR relaxometry is developed to evaluate Na jump rates and self-diffusion coefficient to probe the sodium-ion dynamics in NYSO. Furthermore, NYSO works well as a dual ion conductor in Na and Li metal batteries with Na3V2(PO4)3 and LiFePO4 as cathodes, respectively.

19.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012823

RESUMEN

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Asunto(s)
Neuronas , Optogenética , Silicio , Animales , Silicio/química , Neuronas/fisiología , Ratones , Optogenética/métodos , Calcio/metabolismo , Luz , Encéfalo/fisiología
20.
N Engl J Med ; 388(20): 1843-1852, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37195940

RESUMEN

BACKGROUND: Previous studies have suggested that a single dose of rifampin has protective effects against leprosy in close contacts of patients with the disease. Rifapentine was shown to have greater bactericidal activity against Mycobacterium leprae than rifampin in murine models of leprosy, but data regarding its effectiveness in preventing leprosy are lacking. METHODS: We conducted a cluster-randomized, controlled trial to investigate whether single-dose rifapentine is effective in preventing leprosy in household contacts of patients with leprosy. The clusters (counties or districts in Southwest China) were assigned to one of three trial groups: single-dose rifapentine, single-dose rifampin, or control (no intervention). The primary outcome was the 4-year cumulative incidence of leprosy among household contacts. RESULTS: A total of 207 clusters comprising 7450 household contacts underwent randomization; 68 clusters (2331 household contacts) were assigned to the rifapentine group, 71 (2760) to the rifampin group, and 68 (2359) to the control group. A total of 24 new cases of leprosy occurred over the 4-year follow-up, for a cumulative incidence of 0.09% (95% confidence interval [CI], 0.02 to 0.34) with rifapentine (2 cases), 0.33% (95% CI, 0.17 to 0.63) with rifampin (9 cases), and 0.55% (95% CI, 0.32 to 0.95) with no intervention (13 cases). In an intention-to-treat analysis, the cumulative incidence in the rifapentine group was 84% lower than that in the control group (cumulative incidence ratio, 0.16; multiplicity-adjusted 95% CI, 0.03 to 0.87; P = 0.02); the cumulative incidence did not differ significantly between the rifampin group and the control group (cumulative incidence ratio, 0.59; multiplicity-adjusted 95% CI, 0.22 to 1.57; P = 0.23). In a per-protocol analysis, the cumulative incidence was 0.05% with rifapentine, 0.19% with rifampin, and 0.63% with no intervention. No severe adverse events were observed. CONCLUSIONS: The incidence of leprosy among household contacts over 4 years was lower with single-dose rifapentine than with no intervention. (Funded by the Ministry of Health of China and the Chinese Academy of Medical Sciences; Chinese Clinical Trial Registry number, ChiCTR-IPR-15007075.).


Asunto(s)
Leprostáticos , Lepra , Mycobacterium leprae , Rifampin , Humanos , Incidencia , Lepra/epidemiología , Lepra/prevención & control , Lepra/transmisión , Rifampin/administración & dosificación , Rifampin/análogos & derivados , Leprostáticos/administración & dosificación , Leprostáticos/uso terapéutico , Composición Familiar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA