Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276407

RESUMEN

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticuerpos , Epítopos
2.
Nucleic Acids Res ; 49(W1): W459-W468, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34050762

RESUMEN

Increasing evidence proves the essential regulatory roles of non-coding RNAs (ncRNAs) in biological processes. However, characterizing the specific functions of ncRNAs remains a challenging task, owing to the intensive consumption of the experimental approaches. Here, we present an online platform ncFANs v2.0 that is a significantly enhanced version of our previous ncFANs to provide multiple computational methods for ncRNA functional annotation. Specifically, ncFANs v2.0 was updated to embed three functional modules, including ncFANs-NET, ncFANs-eLnc and ncFANs-CHIP. ncFANs-NET is a new module designed for data-free functional annotation based on four kinds of pre-built networks, including the co-expression network, co-methylation network, long non-coding RNA (lncRNA)-centric regulatory network and random forest-based network. ncFANs-eLnc enables the one-stop identification of enhancer-derived lncRNAs from the de novo assembled transcriptome based on the user-defined or our pre-annotated enhancers. Moreover, ncFANs-CHIP inherits the original functions for microarray data-based functional annotation and supports more chip types. We believe that our ncFANs v2.0 carries sufficient convenience and practicability for biological researchers and facilitates unraveling the regulatory mechanisms of ncRNAs. The ncFANs v2.0 server is freely available at http://bioinfo.org/ncfans or http://ncfans.gene.ac.


Asunto(s)
ARN no Traducido/metabolismo , Programas Informáticos , Elementos de Facilitación Genéticos , Humanos , Metilación , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Nucleic Acids Res ; 49(W1): W317-W325, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34086934

RESUMEN

Gene set enrichment (GSE) analysis plays an essential role in extracting biological insight from genome-scale experiments. ORA (overrepresentation analysis), FCS (functional class scoring), and PT (pathway topology) approaches are three generations of GSE methods along the timeline of development. Previous versions of KOBAS provided services based on just the ORA method. Here we presented version 3.0 of KOBAS, which is named KOBAS-i (short for KOBAS intelligent version). It introduced a novel machine learning-based method we published earlier, CGPS, which incorporates seven FCS tools and two PT tools into a single ensemble score and intelligently prioritizes the relevant biological pathways. In addition, KOBAS has expanded the downstream exploratory visualization for selecting and understanding the enriched results. The tool constructs a novel view of cirFunMap, which presents different enriched terms and their correlations in a landscape. Finally, based on the previous version's framework, KOBAS increased the number of supported species from 1327 to 5944. For an easier local run, it also provides a prebuilt Docker image that requires no installation, as a supplementary to the source code version. KOBAS can be freely accessed at http://kobas.cbi.pku.edu.cn, and a mirror site is available at http://bioinfo.org/kobas.


Asunto(s)
Genes , Programas Informáticos , Expresión Génica , Ontología de Genes , Aprendizaje Automático , Proteínas/genética
4.
Gastrointest Endosc ; 91(1): 41-51, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445040

RESUMEN

BACKGROUND AND AIMS: We developed a system for computer-assisted diagnosis (CAD) for real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinomas (ESCCs) to assist the diagnosis of esophageal cancer. METHODS: A total of 6473 narrow-band imaging (NBI) images, including precancerous lesions, early ESCCs, and noncancerous lesions, were used to train the CAD system. We validated the CAD system using both endoscopic images and video datasets. The receiver operating characteristic curve of the CAD system was generated based on image datasets. An artificial intelligence probability heat map was generated for each input of endoscopic images. The yellow color indicated high possibility of cancerous lesion, and the blue color indicated noncancerous lesions on the probability heat map. When the CAD system detected any precancerous lesion or early ESCCs, the lesion of interest was masked with color. RESULTS: The image datasets contained 1480 malignant NBI images from 59 consecutive cancerous cases (sensitivity, 98.04%) and 5191 noncancerous NBI images from 2004 cases (specificity, 95.03%). The area under curve was 0.989. The video datasets of precancerous lesions or early ESCCs included 27 nonmagnifying videos (per-frame sensitivity 60.8%, per-lesion sensitivity, 100%) and 20 magnifying videos (per-frame sensitivity 96.1%, per-lesion sensitivity, 100%). Unaltered full-range normal esophagus videos included 33 videos (per-frame specificity 99.9%, per-case specificity, 90.9%). CONCLUSIONS: A deep learning model demonstrated high sensitivity and specificity for both endoscopic images and video datasets. The real-time CAD system has a promising potential in the near future to assist endoscopists in diagnosing precancerous lesions and ESCCs.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Computador , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Lesiones Precancerosas/diagnóstico por imagen , Adolescente , Adulto , Anciano , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen de Banda Estrecha , Lesiones Precancerosas/patología , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
5.
Cancer Invest ; 32(6): 209-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24745612

RESUMEN

External beam radiation (EBRT) and (125)I seeds continuous low dose rate radiation (CLDR) were used to treat patients with lung cancer. We herein investigated the biological effects of EBRT and CLDR on lung cancer cells. A549 human lung cancer cell line was thus exposed to different doses of EBRT and CLDR. CLDR was more efficient to inhibit cell growth than EBRT. CLDR induced increased DNA damage as evidenced by long-lasting p-H2AX activity. The enhanced inhibitory effects of CLDR on lung cancer cell growth may be, at least in part, due to the increased Bax/Bcl2 ratio and cyclin B1-mediated G2/M arrest.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de la radiación , Muerte Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Neoplasias Pulmonares/genética , Puntos de Control del Ciclo Celular/genética , Muerte Celular/genética , Línea Celular Tumoral , Ciclina B1/biosíntesis , Daño del ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Radioisótopos de Yodo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteína X Asociada a bcl-2
6.
Biotechnol J ; 19(4): e2300584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651247

RESUMEN

The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.


Asunto(s)
Antibacterianos , Deinococcus , Escherichia coli , Peróxido de Hidrógeno , Nanopartículas del Metal , Plata , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Plata/farmacología , Deinococcus/efectos de los fármacos , Nanopartículas del Metal/química , Peróxido de Hidrógeno/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico , Peroxidasa/metabolismo , Humanos
7.
Front Oncol ; 14: 1365364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725622

RESUMEN

Background: The progress in Colorectal cancer (CRC) screening and management has resulted in an unprecedented caseload for histopathological diagnosis. While artificial intelligence (AI) presents a potential solution, the predominant emphasis on slide-level aggregation performance without thorough verification of cancer in each location, impedes both explainability and transparency. Effectively addressing these challenges is crucial to ensuring the reliability and efficacy of AI in histology applications. Method: In this study, we created an innovative AI algorithm using transfer learning from a polyp segmentation model in endoscopy. The algorithm precisely localized CRC targets within 0.25 mm² grids from whole slide imaging (WSI). We assessed the CRC detection capabilities at this fine granularity and examined the influence of AI on the diagnostic behavior of pathologists. The evaluation utilized an extensive dataset comprising 858 consecutive patient cases with 1418 WSIs obtained from an external center. Results: Our results underscore a notable sensitivity of 90.25% and specificity of 96.60% at the grid level, accompanied by a commendable area under the curve (AUC) of 0.962. This translates to an impressive 99.39% sensitivity at the slide level, coupled with a negative likelihood ratio of <0.01, signifying the dependability of the AI system to preclude diagnostic considerations. The positive likelihood ratio of 26.54, surpassing 10 at the grid level, underscores the imperative for meticulous scrutiny of any AI-generated highlights. Consequently, all four participating pathologists demonstrated statistically significant diagnostic improvements with AI assistance. Conclusion: Our transfer learning approach has successfully yielded an algorithm that can be validated for CRC histological localizations in whole slide imaging. The outcome advocates for the integration of the AI system into histopathological diagnosis, serving either as a diagnostic exclusion application or a computer-aided detection (CADe) tool. This integration has the potential to alleviate the workload of pathologists and ultimately benefit patients.

8.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352315

RESUMEN

Class-II major histocompatibility complexes (MHC-IIs) are central to the communications between CD4+ T cells and antigen presenting cells (APCs), but intrinsic structural features associated with MHC-II make it difficult to develop a general targeting system with high affinity and antigen specificity. Here, we introduce a protein platform, Targeted Recognition of Antigen-MHC Complex Reporter for MHC-II (TRACeR-II), to enable the rapid development of peptide-specific MHC-II binders. TRACeR-II has a small helical bundle scaffold and uses an unconventional mechanism to recognize antigens via a single loop. This unique antigen-recognition mechanism renders this platform highly versatile and amenable to direct structural modeling of the interactions with the antigen. We demonstrate that TRACeR-II binders can be rapidly evolved across multiple alleles, while computational protein design can produce specific binding sequences for a SARS-CoV-2 peptide of unknown complex structure. TRACeR-II sheds light on a simple and straightforward approach to address the MHC peptide targeting challenge, without relying on combinatorial selection on complementarity determining region (CDR) loops. It presents a promising basis for further exploration in immune response modulation as well as a broad range of theragnostic applications.

9.
Biodes Res ; 2022: 9842315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37850141

RESUMEN

The ability to finely control the structure of protein folds is an important prerequisite to functional protein design. The TIM barrel fold is an important target for these efforts as it is highly enriched for diverse functions in nature. Although a TIM barrel protein has been designed de novo, the ability to finely alter the curvature of the central beta barrel and the overall architecture of the fold remains elusive, limiting its utility for functional design. Here, we report the de novo design of a TIM barrel with ovoid (twofold) symmetry, drawing inspiration from natural beta and TIM barrels with ovoid curvature. We use an autoregressive backbone sampling strategy to implement our hypothesis for elongated barrel curvature, followed by an iterative enrichment sequence design protocol to obtain sequences which yield a high proportion of successfully folding designs. Designed sequences are highly stable and fold to the designed barrel curvature as determined by a 2.1 Å resolution crystal structure. The designs show robustness to drastic mutations, retaining high melting temperatures even when multiple charged residues are buried in the hydrophobic core or when the hydrophobic core is ablated to alanine. As a scaffold with a greater capacity for hosting diverse hydrogen bonding networks and installation of binding pockets or active sites, the ovoid TIM barrel represents a major step towards the de novo design of functional TIM barrels.

10.
Nat Biomed Eng ; 2(10): 741-748, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-31015647

RESUMEN

The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 ± 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.


Asunto(s)
Algoritmos , Pólipos del Colon/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Área Bajo la Curva , Neoplasias del Colon/patología , Pólipos del Colon/patología , Colonoscopía , Bases de Datos Factuales , Aprendizaje Profundo , Humanos , Lesiones Precancerosas , Curva ROC , Programas Informáticos
11.
Oncotarget ; 8(21): 34374-34386, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28423735

RESUMEN

Long non-coding RNAs are known to be involved in cancer progression, but their biological functions and prognostic values are still largely unexplored in diffuse large B-cell lymphoma. In this study, long non-coding RNAs expression was characterized in 1,403 samples including normal and diffuse large B-cell lymphoma by repurposing 7 microarray datasets. Compared with any stage of normal B cells, NONHSAG026900 expression was significantly decreased in tumor samples. And in germinal center B-cell subtype, the significantly higher expression of NONHSAG026900 indicated it was a favorable prognosis biomarker. Then the prognostic power of NONHSAG026900 was validated with another independent dataset and NONHSAG026900 improved the predictive power of International Prognostic Index as an independent factor. Moreover, functional prediction and validation demonstrated that NONHSAG026900 could inhibit cell cycle activity to restrain tumor proliferation. These findings identified NONHSAG026900 as a novel prognostic biomarker and offered a new therapeutic target for diffuse large B-cell lymphoma patients.


Asunto(s)
Biomarcadores de Tumor/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , ARN Largo no Codificante/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Análisis de Supervivencia
12.
Radiat Oncol ; 8: 219, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24053278

RESUMEN

BACKGROUND: To characterize the effect of combined treatment of the anti-epidermal growth factor receptor (EGFR) monoclonal antibody C225 and 125-iodine (125I) seed radiation in human colorectal cancer. METHODS: We treated LS180 cells with 125I continuous low dose rate radiation in the presence and absence of 100 nM C225. The clonogenic capacity, cellular proliferation, cell cycle distribution, apoptosis, and molecular pathways of the cells following the treatments were analyzed in vitro. RESULTS: The sensitizer enhancement ratio of C225 was approximately 1.4. Treatment with C225 and radiation alone produced significant inhibition of cell growth, but combination therapy produced greater inhibition than either treatment administered alone. C225 increased the radiation-induced apoptosis and the fraction of γ-H2AX foci positive cells at 48 h after treatment. The Akt phosphorylation level was lower in the cells receiving the combination treatment than in the cells treated with radiation or C225 alone. CONCLUSIONS: These findings indicate that C225 sensitizes LS180 cells to 125I seed radiation. Growth inhibition is mediated by inducing apoptosis and not cell cycle arrest. Additionally, we confirmed that C225 impairs DNA repair by reducing the cellular level of the DNA-PKcs and Ku70 proteins. Furthermore, the inhibition of Akt signaling activation may be responsible for the C225-mediated radiosensitization.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias Colorrectales/patología , Radioisótopos de Yodo/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Western Blotting , Braquiterapia/métodos , Línea Celular Tumoral , Cetuximab , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Humanos , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación
13.
Radiat Oncol ; 8: 196, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23937791

RESUMEN

PURPOSE: To determine the biological effectiveness of single, fractionated and continuous low dose rate irradiation on the human colorectal cancer cell line CL187 in vitro and explore the cellular mechanisms. MATERIALS AND METHODS: The CL187 cells were exposed to radiation of 6 MV X-ray at a high dose rate of 4Gy/min and 125I seed at a low dose rate of 2.77 cGy/h. Three groups were employed: single dose radiation group (SDR), fractionated dose radiation group (FDR) by 2Gy/f and continuous low dose rate radiation group (CLDR). Four radiation doses 2, 4, 6 and 8Gy were chosen and cells without irradiation as the control. The responses of CL187 cells to distinct modes of radiation were evaluated by the colony-forming assay, cell cycle progression as well as apoptosis analysis. In addition, we detected the expression patterns of DNA-PKcs, Ku70 and Ku80 by Western blotting. RESULTS: The relative biological effect for 125I seeds compared with 6 MV X-ray was 1.42. 48 hrs after 4Gy irradiation, the difference between proportions of cells at G2/M phase of SDR and CLDR groups were statistically significant (p = 0.026), so as the FDR and CLDR groups (p = 0.005). 48 hrs after 4Gy irradiation, the early apoptotic rate of CLDR group was remarkably higher than SDR and FDR groups (CLDR vs. SDR, p = 0.001; CLDR vs. FDR, p = 0.02), whereas the late apoptotic rate of CLDR group increased significantly compared with SDR and FDR group (CLDR vs. SDR, p = 0.004; CLDR vs. FDR, p = 0.007). Moreover, DNA-PKcs and Ku70 expression levels in CLDR-treated cells decreased compared with SDR and FDR groups. CONCLUSIONS: Compared with the X-ray high dose rate irradiation, 125I seeds CLDR showed more effective induction of cell apoptosis and G2/M cell cycle arrest. Furthermore, 125I seeds CLDR could impair the DNA repair capability by down-regulating DNA-PKcs and Ku70 expression.


Asunto(s)
Apoptosis/efectos de la radiación , Línea Celular Tumoral/efectos de la radiación , Neoplasias Colorrectales , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Braquiterapia/métodos , Ciclo Celular/efectos de la radiación , Humanos , Immunoblotting , Radioisótopos de Yodo , Efectividad Biológica Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA