Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891803

RESUMEN

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Asunto(s)
Neuronas , Proteínas de Unión a Fosfato , Piroptosis , Virus de la Rabia , Rabia , Animales , Neuronas/virología , Neuronas/metabolismo , Neuronas/patología , Virus de la Rabia/patogenicidad , Virus de la Rabia/fisiología , Rabia/virología , Rabia/patología , Rabia/metabolismo , Ratones , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Encéfalo/virología , Encéfalo/patología , Encéfalo/metabolismo , Gasderminas
2.
Viruses ; 15(6)2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37376523

RESUMEN

Rabies is a lethal encephalitis caused by the rabies virus (RABV) with a fatality rate near 100% after the onset of clinical symptoms in humans and animals. Microglia are resident immune cells in the central nervous system. Few studies have been conducted on the functional role of microglia in RABV infection. Here, we performed a transcriptomic analysis of mRNA expression profiles in the microglia of mouse brains intracerebrally infected with RABV. We successfully isolated single microglial cells from the mouse brains. The survival rate of dissociated microglial cells was 81.91%-96.7%, and the purity was 88.3%. Transcriptomic analysis revealed 22,079 differentially expressed mRNAs identified in the microglia of mouse brains infected with RABV strains (rRC-HL, GX074, and CVS-24) of varying virulence at 4 and 7 days post-infection (dpi) compared to the control group. The numbers of DEGs versus the control at 4 and 7 dpi in mice infected with rRC-HL, GX074, and CVS-24 were 3622 and 4590, 265 and 4901, and 4079 and 6337. The GO enrichment analysis showed that response to stress, response to external stimulus, regulation of response to stimulus, and immune system process were abundant during RABV infection. The KEGG analysis indicated that the Tlr, Tnf, RIG-I, NOD, NF-κB, MAPK, and Jak-STAT signaling pathways were involved in RABV infection at both 4 and 7 dpi. However, some phagocytosis and cell signal transduction processes, such as endocytosis, p53, phospholipase D, and oxidative phosphorylation signaling pathways, were only expressed at 7 dpi. The involvement of the Tnf and Tlr signaling pathways prompted us to construct a protein-protein interaction (PPI) network of these pathways. The PPI revealed 8 DEGs, including Mmp9, Jun, Pik3r1, and Mapk12. Notably, Il-1b interacted with Tnf and Il-6 with combined scores of 0.973 and 0.981, respectively. RABV causes significant changes in mRNA expression profiles in the microglia in mice. 22,079 differentially expressed mRNAs were identified in the microglia of mice infected with RABV strains of varying virulence at 4 and 7 dpi. The DEGs were evaluated using GO, KEGG, and PPI network analysis. Many immune pathways were up-regulated in RABV-infected groups. The findings will help elucidate the microglial molecular mechanisms of cellular metabolism dysregulated by RABV and may provide important information for investigating RABV pathogenesis and therapeutic methods.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Animales , Ratones , Microglía , Transcriptoma , Virulencia , Encéfalo/patología , Ratones Endogámicos NOD , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA