Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(9): e2307186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857583

RESUMEN

Flexible perovskite solar cells (F-PSCs) have emerged as promising alternatives to conventional silicon solar cells for applications in portable and wearable electronics. However, the mechanical stability of inherently brittle perovskite, due to residual lattice stress and ductile fracture formation, poses significant challenges to the long-term photovoltaic performance and device lifetime. In this paper, to address this issue, a dynamic "ligament" composed of supramolecular poly(dimethylsiloxane) polyurethane (DSSP-PPU) is introduced into the grain boundaries of the PSCs, facilitating the release of residual stress and softening of the grain boundaries. Remarkably, this dynamic "ligament" exhibits excellent self-healing properties and enables the healing of cracks in perovskite films at room temperature. The obtained PSCs have achieved power conversion efficiencies of 23.73% and 22.24% for rigid substrates and flexible substrates, respectively, also 17.32% for flexible mini-modules. Notably, the F-PSCs retain nearly 80% of their initial efficiency even after subjecting the F-PSCs to 8000 bending cycles (r = 2 mm), which can further recover to almost 90% of the initial efficiency through the self-healing process. This remarkable improvement in device stability and longevity holds great promise for extending the overall lifetime of F-PSCs.

2.
Small ; 20(14): e2306954, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990368

RESUMEN

FAPbI3 perovskites have garnered considerable interest owing to their outstanding thermal stability, along with near-theoretical bandgap and efficiency. However, their inherent phase instability presents a substantial challenge to the long-term stability of devices. Herein, this issue through a dual-strategy of self-assembly 3D/0D quasi-core-shell structure is tackled as an internal encapsulation layer, and in situ introduction of excess PbI2 for surface and grain boundary defects passivating, therefore preventing moisture intrusion into FAPbI3 perovskite films. By utilizing this method alone, not only enhances the stability of the FAPbI3 film but also effectively passivates defects and minimizes non-radiative recombination, ultimately yielding a champion device efficiency of 23.23%. Furthermore, the devices own better moisture resistance, exhibiting a T80 lifetime exceeding 3500 h at 40% relative humidity (RH). Meanwhile, a 19.51% PCE of mini-module (5 × 5 cm2) is demonstrated. This research offers valuable insights and directions for the advancement of stable and highly efficient FAPbI3 perovskite solar cells.

3.
Phys Chem Chem Phys ; 26(15): 11722-11730, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563575

RESUMEN

Ferrovalley materials hold great promise for implementation of logic and memory devices in valleytronics. However, there have so far been limited ferrovalley materials exhibiting significant valley polarization and high Curie temperature (TC). Using first-principles calculations, we predict that the TiTeBr monolayer is a promising ferrovalley candidate. It exhibits intrinsic ferromagnetism with TC as high as 220 K. It is indicated that an out-of-plane alignment of magnetization demonstrates a valley polarization up to 113 meV in the topmost valence band, as further verified by perturbation theory considering both the spin polarization and spin-orbit coupling. Under an in-plane electric field, the valley-dependent Berry curvature results in the anomalous valley Hall effect (AVHE). Moreover, under a suitable in-plane biaxial strain, the TiTeBr monolayer transforms into a Chern insulator with a nonzero Chern number, yet retains its ferrovalley characters and thus the emergent quantum anomalous valley Hall effect (QAVHE). Our study indicates that the TiTeBr monolayer is a promising ferrovalley material, and it provides a platform for investigating the valley-dependent Hall effect.

4.
Small ; 19(28): e2301323, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36988022

RESUMEN

The pinhole-free and defect-less perovskite film is crucial for achieving high efficiency and stable perovskite solar cells (PSCs), which can be prepared by widely used anti-solvent crystallization strategies. However, the involvement of anti-solvent requires precise control and inevitably brings toxicity in fabrication procedures, which limits its large-scale industrial application. In this work, a facile and effective co-solvent engineering strategy is introduced to obtain high- quality perovskite film while avoiding the usage of anti-solvent. The uniform and compact perovskite polycrystalline films have been fabricated through the addition of co-solvent that owns strong coordination capacity with perovskite components , meanwhile possessing the weaker interaction with main solvent . With those strategies, a champion power conversion efficiency (PCE) of 22% has been achieved with the optimal co-solvent, N-methylpyrrolidone (NMP) and without usage of anti-solvent. Subsequently, PSCs based on NMP show high repeatability and good shelf stability (80% PCE remains after storing in ambient condition for 30 days). Finally, the perovskite solar module (5 × 5 cm) with 7 subcells connects in series yielding champion PCE of 16.54%. This strategy provides a general guidance of co-solvent selection for PSCs based on anti-solvent free technology and promotes commercial application of PSCs.

5.
Phys Rev Lett ; 131(13): 136701, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37831994

RESUMEN

The linear magnetoelectric effect is an attractive phenomenon in condensed matters and provides indispensable technological functionalities. Here a colossal linear magnetoelectric effect with diagonal component α_{33} reaching up to ∼480 ps/m is reported in a polar magnet Fe_{2}Mo_{3}O_{8}. This effect can persist in a broad range of magnetic field (∼20 T) and is orders of magnitude larger than reported values in literature. Such an exceptional experimental observation can be well reproduced by a theoretical model affirmatively unveiling the vital contributions from the exchange striction, while the sign difference of magnetocrystalline anisotropy can also be reasonably figured out.

6.
Phys Rev Lett ; 130(12): 126801, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027865

RESUMEN

The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO_{3} membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics.

7.
Inorg Chem ; 61(2): 944-949, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34965109

RESUMEN

Magnetic susceptibility, specific heat, dielectric, and electric polarization of LiCuFe2(VO4)3 have been investigated. Two sequential antiferromagnetic transitions at TN1 ∼ 9.95 K and TN2 ∼ 8.17 K are observed under zero magnetic field. Although a dielectric peak at TN1 is clearly identified, the measured pyroelectric current also exhibits a sharp peak at TN1, implying the magnetically relevant ferroelectricity. Interestingly, another pyroelectric peak around TN2 with an opposite signal is observed, resulting in the disappearance of electric polarization below TN2. Besides, the electric polarization is significantly suppressed in response to external magnetic field, evidencing a remarkable magnetoelectric effect. These results suggest the essential relevance of the magnetic structure with the ferroelectricity in LiCuFe2(VO4)3, deserving further investigation of the underlying mechanism.

8.
Inorg Chem ; 61(1): 86-91, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34932903

RESUMEN

Searching for novel magnetoelectric (ME) materials has been one of the major issues of multiferroics. In this work, we present a systematic research study on garnet Mn3Al2Ge3O12, including structural, magnetic, heat capacity, and ME characterizations. Below the Néel temperature TN ∼ 6.8 K, Mn2+ spins form a long-range antiferromagnetic order, and a magnetic field H-driven electric polarization P is identified simultaneously. The relationship between P and H is nonlinear under low H and becomes linear under high H. Such transition is believed to originate from the H-induced variation of the magnetic structure. In addition, the P reaches 0.6 µC/m2 under µ0H = 9 T, corresponding to an ME coupling coefficient of αME ∼ 0.08 ps/m under high H. The small αME is attributed to the weak spin-orbit coupling and weak magnetic interactions in Mn3Al2Ge3O12. Furthermore, we realize the stable control of P by periodically varying H, which is crucial for potential application. We provide a rare case that a garnet material shows a first-order ME effect.

9.
Phys Chem Chem Phys ; 23(5): 3479-3484, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33507187

RESUMEN

Cesium lead halide perovskites as ideal photovoltaic and optoelectronics materials have attracted more and more attention. Here, we investigated the structure and electronic properties of halide perovskite CsPbX3 (X = I, Br, Cl) by particle swarm optimization and first principles methods at hydrostatic pressure. For CsPbI3, the structure phases and corresponding phase transitions of non-perovskite orthorhombic Pnma (non-Pv-Pnma), monoclinic C2/m (C2/m-I), and another different monoclinic phase C2/m (C2/m-II) are found in the pressure range 0-120 GPa. The largest piezochromic effect in the perovskites can be predicted in CsPbI3 under a pressure below 10 GPa. The band gap is reduced under pressure and the C2/m-II phase becomes a metal under pressures larger than 65 GPa. For CsPbBr3 and CsPbCl3, the same phase sequence under pressure, i.e. from perovskite Pnma (Pv-Pnma), to non-Pv-Pnma, C2/m-I, and then to another orthorhombic Cmcm phase, is found. The newly discovered non-Pv-Pnma phase gives an excellent explanation of previous measurements at low pressure for CsPbBr3 and CsPbCl3. Furthermore, the calculations of electronic properties show that pressure is an effective means to tune the band gap. Our calculations and results extend the applications in photovoltaics and optoelectronics of halide perovskites.

10.
Inorg Chem ; 59(12): 8127-8133, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484663

RESUMEN

The magnetic properties of the spin-5/2 double molybdate LiFe(MoO4)2 have been characterized by heat capacity, magnetic susceptibility, and neutron powder diffraction techniques. Unlike the multiferroic system LiFe(WO4)2 which exhibits two successive magnetic transitions, LiFe(MoO4)2 undergoes only one antiferromagnetic transition at TN ∼ 23.8 K. Its antiferromagnetic magnetic structure with the commensurate propagation vector k = (0, 0.5, 0) has been determined. Density functional theory calculations confirm the antiferromagnetic ground state and provide a numerical estimate of the relevant exchange coupling constants.

11.
Phys Chem Chem Phys ; 22(30): 17255-17262, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685947

RESUMEN

The magnetism and spin exchange coupling of monolayer CrOCl with different strains are investigated systematically using first principles. It is found that the magnetic ground state can be changed from ferromagnetic (FM) to antiferromagnetic (AFM), and the Curie temperature (TC) is enhanced significantly by applying the uniaxial strain along a- or b-axis direction. The variations of spin exchange coupling are explained according to the Goodenough-Kanamori-Anderson (GKA) and Bethe-Slater Interaction (BSI) rules. The strain-dependent magnetic state is mainly attributed to the competition between direct exchange interactions of cation-cation and indirect superexchange ones of cation-anion-cation in monolayer CrOCl. The different competitions in a- and b-axis direction determine the different critical intervals R of magnetic transitions, where R is the distance of the two nearest-neighbor (NN) Cr3+ ions. The AFM-FM transition occurs at R/r3d = 2.9 and 3.75 in a-axis direction, while it happens at R/r3d = 2.65 along b-axis direction. These results indicate that the sensitive relevancy between the external strain and magnetic coupling makes monolayer CrOCl a promising candidate for spintronics.

12.
Phys Chem Chem Phys ; 21(16): 8553-8558, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30964130

RESUMEN

The combination of ferroelectricity with narrow-gap high-mobility semiconductors may not only entail both functions of nonvolatile memory and efficient manipulation of signals, but may also facilitate efficient ferroelectric photovoltaics and thermoelectrics. However, these applications are hindered by the wide gap and poor mobility of current ferroelectrics. A recent study (J. Am. Chem. Soc., 2018, 140, 3736) reported a facile, general, low-temperature, and size tunable solution phase synthesis of NaBiS2 and NaBiSe2 that are made of relatively abundant or biocompatible elements, which enables their large-scale practical applications. Herein we show first-principles evidence of their ferroelectricity with a large polarization (∼33 µC cm-2), a moderate bandgap (∼1.6 eV) and a high electron-mobility (∼104 cm2 V-1 s-1). Although they have a relatively small switching barrier, their ferroelectricity can be robust under ambient conditions with enhanced polarization upon either application of a small tensile strain or ion doping, where distortion can be increased and multiferroics may also be obtained, despite reduced mobility. Considering previous reports on photovoltaics and thermoelectrics of similar compounds, sodium bismuth dichalcogenides might be tuned for higher performance with the coexistence of these desirable properties.

13.
Phys Chem Chem Phys ; 21(36): 20132-20136, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31482891

RESUMEN

Using first-principles calculations, we investigate the structural, electronic, and magnetic properties of perovskite LaMO3/YMO3 superlattices (M = Cr, Mn, Co and Ni). It is found that ferroelectricity can emerge in LaMO3/YMO3 superlattices (M = Cr, Mn, Co), allowing them to be promising multiferroic candidates, while no ferroelectricity is found in the LaNiO3/YNiO3 superlattice. The electronic structure calculations indicate that the LaCrO3/YCrO3, LaMnO3/YMnO3, and LaCoO3/YCoO3 superlattices are insulators, and their magnetic ground states exhibit G-type antiferromagnetic (AFM), A-type AFM, and G-type AFM order, respectively, while the LaNiO3/YNiO3 superlattice is however a half-metallic ferromagnet. The electronic structure and magnetic ground state are discussed, based on the projected density of states data and Heisenberg model, respectively, and the magnetic phase transition temperature is evaluated based on mean-field theory. In the meantime, the spontaneous ferroelectric polarization of the LaMO3/YMO3 superlattices (M = Cr, Mn, Co) is determined respectively using the Born effective charge model and Berry phase method, and their hybrid improper ferroelectric character is predicted, with the net polarization mainly from the different displacements of the LaO layers and YO layers along the b-axis. It is suggested that alternative multiferroic materials can be obtained by properly designing superlattices that consist of two non-polar magnetic materials but exhibit tunable magnetic ground states and transition temperature and hybrid improper ferroelectricity.

14.
Planta ; 248(5): 1079-1099, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30039231

RESUMEN

MAIN CONCLUSION: Hydrogen peroxide-responsive pathways in roots of alkaligrass analyzed by proteomic studies and PutGLP enhance the plant tolerance to saline-, alkali- and cadmium-induced oxidative stresses. Oxidative stress adaptation is critical for plants in response to various stress environments. The halophyte alkaligrass (Puccinellia tenuiflora) is an outstanding pasture with strong tolerance to salt and alkali stresses. In this study, iTRAQ- and 2DE-based proteomics approaches, as well as qRT-PCR and molecular genetics, were employed to investigate H2O2-responsive mechanisms in alkaligrass roots. The evaluation of membrane integrity and reactive oxygen species (ROS)-scavenging systems, as well as abundance patterns of H2O2-responsive proteins/genes indicated that Ca2+-mediated kinase signaling pathways, ROS homeostasis, osmotic modulation, and transcriptional regulation were pivotal for oxidative adaptation in alkaligrass roots. Overexpressing a P. tenuiflora germin-like protein (PutGLP) gene in Arabidopsis seedlings revealed that the apoplastic PutGLP with activities of oxalate oxidase and superoxide dismutase was predominantly expressed in roots and played important roles in ROS scavenging in response to salinity-, alkali-, and CdCl2-induced oxidative stresses. The results provide insights into the fine-tuned redox-responsive networks in halophyte roots.


Asunto(s)
Genes de Plantas/genética , Glicoproteínas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Betaína/metabolismo , Glicoproteínas/genética , Malondialdehído/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poaceae/genética , Prolina/metabolismo , Mapas de Interacción de Proteínas , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Plantas Tolerantes a la Sal/genética
15.
Phys Rev Lett ; 120(8): 087201, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543015

RESUMEN

We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO_{4}, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.

16.
Nanotechnology ; 29(10): 105402, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29381478

RESUMEN

Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

17.
Nano Lett ; 17(1): 486-493, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27935317

RESUMEN

A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.

18.
Chemphyschem ; 18(22): 3240-3244, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28851006

RESUMEN

A three-dimensional Bi2 MoO6 nanostrip architecture was synthesized by the hydrothermal method using sodium oleate as a surfactant. The generated Bi2 MoO6 nanostrips intercross with each other to form a unique network structure with a band gap of 2.92 eV, corresponding to visible-light wavelength. Time-evolution experiments reveal the formation mechanism of the Bi2 MoO6 network. The photocatalytic reduction of CO2 to CH4 catalyzed by the Bi2 MoO6 architecture was evaluated and compared with the process catalyzed by a Bi2 MoO6 nanoplate analogue synthesized in the absence of sodium oleate as well as with the solid-state reaction. The Bi2 MoO6 nanostrips exhibit the best photocatalytic activity, which can be attributed to their high specific surface area, high light-absorption intensity, suitable thickness for fast charge-carrier migration, and the presence of pores for reactant transport.

19.
Nanotechnology ; 28(27): 275401, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28531092

RESUMEN

We report the first demonstration of a high-efficiency photoelectrochemical (PEC) water splitting reaction using a novel Si NWs/WO3 core/shell photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching process followed by dip-coating, airing and annealing methods. The dense and vertically aligned Si NWs/WO3 core/shell nanostructure were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. In comparison to planar n-Si, Si NWs and planar Si/WO3, the Si NWs/WO3 samples showed significantly enhanced photocurrent over the entire potential sweep range. More significantly, the Si NWs/WO3 samples have an exceptionally low photocurrent onset potential of -0.6393 V versus reversible hydrogen electrode (RHE), indicating very efficient charge separation and charge transportation processes. The as-prepared electrode also has a photocurrent density of 2.7 mA cm-2 at 0.6107 V versus RHE in 0.5 M Na2SO4 solution under simulated solar light irradiation (100 mW cm-2 from 300 W Xenon lamp coupled with an AM 1.5 G filter). An optimal solar-to-hydrogen efficiency of about 1.9% was achieved at 0.2676 V versus RHE. Electrochemical impedance spectroscopy was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may due to the increased charge separation. The x-ray photoelectron spectroscopy measurements indicated the chemical composition of the Si NWs/WO3 nanostructure. Our work has provided an efficient strategy to improve the energy conversion efficiency and photocurrent of water splitting materials.

20.
Nano Lett ; 16(11): 7309-7315, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27740764

RESUMEN

Realization of ferroelectric semiconductors by conjoining ferroelectricity with semiconductors remains a challenging task because most present-day ferroelectric materials are unsuitable for such a combination due to their wide bandgaps. Herein, we show first-principles evidence toward the realization of a new class of two-dimensional (2D) ferroelectric semiconductors through covalent functionalization of many prevailing 2D materials. Members in this new class of 2D ferroelectric semiconductors include covalently functionalized germanene, and stanene (Nat. Commun. 2014, 5, 3389), as well as MoS2 monolayer (Nat. Chem. 2015, 7, 45), covalent functionalization of the surface of bulk semiconductors such as silicon (111) (J. Phys. Chem. B 2006, 110 , 23898), and the substrates of oxides such as silica with self-assembly monolayers (Nano Lett. 2014, 14, 1354). The newly predicted 2D ferroelectric semiconductors possess high mobility, modest bandgaps, and distinct ferroelectricity that can be exploited for developing various heterostructural devices with desired functionalities. For example, we propose applications of the 2D materials as 2D ferroelectric field-effect transistors with ultrahigh on/off ratio, topological transistors with Dirac Fermions switchable between holes and electrons, ferroelectric junctions with ultrahigh electro-resistance, and multiferroic junctions for controlling spin by electric fields. All these heterostructural devices take advantage of the combination of high-mobility semiconductors with fast writing and nondestructive reading capability of nonvolatile memory, thereby holding great potential for the development of future multifunctional devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA