Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 615(7950): 56-61, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859579

RESUMEN

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

2.
Adv Mater ; : e2406093, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865651

RESUMEN

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

3.
Adv Mater ; 36(19): e2311082, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288858

RESUMEN

Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs.

4.
RSC Adv ; 14(24): 17032-17040, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38808236

RESUMEN

Nanopore technology, re-fueled by two-dimensional (2D) materials such as graphene and MoS2, controls mass transport by allowing certain species while denying others at the nanoscale and has a wide application range in DNA sequencing, nano-power generation, and others. With their low transmembrane transport resistance and high permeability stemming from their ultrathin nature, crystalline 2D materials do not possess nanoscale holes naturally, thus requiring additional fabrication to create nanopores. Herein, we demonstrate that nanopores exist in amorphous monolayer carbon (AMC) grown at low temperatures. The size and density of nanopores can be tuned by the growth temperature, which was experimentally verified by atomic images and further corroborated by kinetic Monte Carlo simulation. Furthermore, AMC films with varied degrees of disorder (DOD) exhibit tunable transmembrane ionic conductance over two orders of magnitude when serving as nanopore membranes. This work demonstrates the DOD-tuned property in amorphous monolayer carbon and provides a new candidate for modern membrane science and technology.

5.
ACS Appl Mater Interfaces ; 15(47): 54886-54897, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37963338

RESUMEN

Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m-1 K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.

6.
Dalton Trans ; 52(36): 12869-12877, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622489

RESUMEN

Aqueous rechargeable zinc ion batteries (ARZIBs) are ideal for massive and longstanding energy storage applications because of their excellent security and low operation cost. Nevertheless, ARZIBs are subject to the severe corrosion reaction of zinc metal anodes that is derived from the thermodynamic unsteadiness of the zinc anodes in aqueous solution, as well as zinc dendrite growth originating from uncontrolled zinc deposition. Herein, we created a separator by coating a thin piece of polypropylene (PP) with a compound consisting of zinc trifluoromethanesulfonate [Zn(OTf)2] and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP). Consequently, the severe corrosion reaction of the zinc metal anodes and the profuse formation of zinc dendrites were effectively mitigated by the novel PP separator, which prolonged the lifetime of the zinc metal anodes. When a zinc metal plating layer was used with preferential (002) crystallographic orientation, the cyclic performance over 1100 h of the symmetrical Zn∥Zn battery based on the novel separator was steady. Additionally, the Zn∥MnO2 batteries exhibited an impressive specific capacity and competitive long durability of 75.5% over 500 cycles at a current density of 0.1 A g-1. With this work, we intend to set the standard for designing novel separators in the construction of advanced zinc anodes for high-performance ARZIBs.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38039069

RESUMEN

Aqueous Zn-ion batteries offer the advantages of greater security and lower fabrication costs over their lithium-ion counterparts. However, their further advancement and practical application are hindered by the drastic decay in their performance due to the uncontrollable dendrite growth on Zn anodes. In this study, we fabricated a versatile three-dimensional (3D) interfacial layer (3D PVDF-Zn(TFO)2 (PVDF: poly(vinylidene fluoride); TFO: trifluoromethanesulfonate), which simultaneously formed porous Zn-metal anodes (PZn) with an enhanced (002) texture, via a in situ etching scheme. The 3D PVDF-Zn(TFO)2@PZn symmetrical cells leverage the advantages of surface coating and 3D porous architectures to yield extra-long cyclic lifetimes of over 5300 h (0.1 mA cm-2). The fabricated anodes were found to be compatible with MnO2 cathodes, and the resulting full batteries delivered an outstanding capacity of 336 mAh g-1 at 0.1 A g-1 and exhibited impressive long-term reversibility with a capacity retention of 78.7% for 2000 cycles. The proposed coating strategy is viable for developing porous structures with cutting-edge designs and for textured surface engineering.

8.
Sci Total Environ ; 818: 151799, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801503

RESUMEN

The Heilong-Amur River Basin (HARB) in Northeast Asia has experienced distinct land surface changes during the past 40 years due to extensive ecological restoration programs, agricultural management, and grassland grazing in different ecosystems. However, the regional climate impact caused by the long-term spatially heterogeneous land surface changes in this mid-high latitude region is not well documented. Therefore, this study used multi-source satellite measurements records and a high-resolution land-atmosphere coupled regional climate model (WRF) to investigate the land surface changes and their associated thermal and moisture impacts across three main ecosystems over the Heilong-Amur River basin from 1982 to 2018. Firstly, satellite observations indicated an overall greening in HARB, with variations across ecosystems. The significant summer farmland greening is the most representative, with the farmland green vegetation fraction (GVF) remarkably increasing by 7.78% in summer. The forest greening magnitude is stronger in spring (3.42%) than in summer (2.85%), while the grassland vegetation showed some local browning signals in summer. Secondly, our simulated results showed the summer farmland greening accelerated evapotranspiration (ET) by 0.161 mm/d and significantly cools the surface temperature by 0.508 °C averaged at the ecosystem scale, which was highly correlated with the satellite observations but with lower cooling magnitude. The forest greening brought less surface cooling in spring than summer due to the stronger albedo feedback, despite with greater increase in GVF and ET. While with the opposite process, the local grassland browning leads to consistent warming effects, which can be detected from both satellite observations and our simulation results. Finally, our results also found that rainfall increasing averagely at the ecosystem scale can't fully compensate the water emission from enhanced ET due to the surface greening, contributing to soil moisture decline in both farmland and relative dry forests.


Asunto(s)
Modelos Climáticos , Ecosistema , Granjas , Ríos , China , Clima , Cambio Climático , Restauración y Remediación Ambiental , Bosques
9.
Nanoscale ; 13(25): 11223-11231, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34151929

RESUMEN

High-quality hexagonal BN (hBN) crystals, owing to their irreplaceable roles in new functional devices such as universal substrates and excellent layered insulators are exceedingly required in the field of two-dimensional (2D) materials. Although large-scale monolayer hBN crystals have been successfully grown on catalytic metals, the synthesis of large-area continuous hBN films with thickness in microns is challenging, hindering their applications at the mesoscopic level. Herein, we report the single-metal flux growth of centimeter-large, micron-thick, and high-quality continuous hBN films by balancing the grain size and coverage. The as-grown films can be readily exfoliated and transferred onto arbitrary substrates. Isotopically engineered hBN crystals can be obtained as well by the method. The narrow Raman line widths of the intralayer E2g mode peak (2.9 cm-1 for h11BN, 3.3 cm-1 for h10BN, and 7.9 cm-1 for hNaBN) and ultrahigh thermal conductivity (830 W m-1 K-1 for 4L h11BN) demonstrate high crystal quality and low defect density. Our results provide the foundation for the cost-efficient and lab-achievable synthesis of high-quality hBN films aimed at its mesoscopic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA