Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Adv Mater ; 36(18): e2311766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227289

RESUMEN

Water electrolysis is an environmentally-friendly strategy for hydrogen production but suffers from significant energy consumption. Substituting urea oxidation reaction (UOR) with lower theoretical voltage for water oxidation reaction adopting nickel-based electrocatalysts engenders reduced energy consumption for hydrogen production. The main obstacle remains strong interaction between accumulated Ni3+ and *COO in the conventional Ni3+-catalyzing pathway. Herein, a novel Ni3+/Ni2+ mediated pathway for UOR via constructing a heterojunction of nickel metaphosphate and nickel telluride (Ni2P4O12/NiTe), which efficiently lowers the energy barrier of UOR and avoids the accumulation of Ni3+ and excessive adsorption of *COO on the electrocatalysts, is developed. As a result, Ni2P4O12/NiTe demonstrates an exceptionally low potential of 1.313 V to achieve a current density of 10 mA cm-2 toward efficient urea oxidation reaction while simultaneously showcases an overpotential of merely 24 mV at 10 mA cm-2 for hydrogen evolution reaction. Constructing urea electrolysis electrolyzer using Ni2P4O12/NiTe at both sides attains 100 mA cm-2 at a low cell voltage of 1.475 V along with excellent stability over 500 h accompanied with nearly 100% Faradic efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA